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Abstract

When testing a system that has multiple physically distributed ports/interfaces
it is normal to place a tester at each port. Each tester observes only the events at
its port and it is known that this can lead to additional controllability problems.
While such controllability problems can be overcome by the exchange of external
coordination messages between the testers, this requires the deployment of an ex-
ternal network and may thus increase the costs of testing. The problem studied
in this paper is finding a minimum number of coordination channels to overcome
controllability problems in distributed testing. Three instances of this problem are
considered. The first problem is to find a minimum number of channels between
testers in order to overcome the controllability problems in a given test sequence
to be applied in testing. The second problem is finding a minimal set of channels
that allow us to overcome controllability problems in any test sequence that may
be selected from the specification of the system under test. The last problem is to
find a test sequence that achieves a particular test objective and in doing so allows
fewest channels to be used.

Key words: distributed test architecture, controllability problem, minimizing
channels, test execution.

1 Introduction

In distributed testing, a distributed test architecture is used to test a system
under test (SUT) N where a tester is placed at each port of N and a test
sequence, derived from the specification of N , is applied. The application of
the test sequence in this architecture requires the coordination amongst the
remote testers. This requirement may lead to controllability and observability

Preprint submitted to Elsevier Science 26 October 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S U T T e s t e r  a t  p T e s t e r  a t  q

Fig. 1. A controllability problem
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Fig. 2. An observability problem

problems due to the absence of a global clock. These problems occur if a tester
cannot determine either when to apply a particular input to N , or whether a
particular output from N is generated in response to a specific input, respec-
tively. That is, the controllability (synchronisation) problem occurs when the
tester at a port q is expected to send an input to N after N responds to an
input from the tester at some port p 6= q, without sending an output to q and
so the tester at port q is not able to determine when to send its input. This is
illustrated in Figure 1.

Let us suppose, for example, that the input of x at port p is expected to
lead to output y at p only and this should be followed by input x′ at a port
q 6= p. Then the tester at q does not observe either x or y and so cannot know
when to send x′. The observability problem occurs when a tester at a port j
is expecting to receive an output from N in response to either the previous
input or the current input and it is not the tester to send the current input
and so the tester at port j is not able to determine which input caused the
output. Let us suppose, for example, that the input of x at port p is expected
to lead to output y at p only, this is to be followed by input x′ at p and this
should lead to output of y at p and y′ at q 6= p. Then the tester at p expects
to observe xyx′y and the tester at q expects to observe y′. This is still the case
if the SUT responds to the input of x by producing y at p and y′ at q and
responds to input x′ with output of y at p only. This is illustrated in Figure
2.
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This paper concentrates on the situation in which the required behaviour of
the SUT is represented by a Finite State Machine (FSM) that has multiple
ports and black-box testing is being applied. Previous work on testing in
the distributed test architecture has focussed on testing from an FSM since
FSMs are suitable for modelling state-based systems and can be easily adapted
to the case where there are multiple ports (see, for example, [6,7,13–15]).
However, some of the results simply concern the problem of applying a given
test sequence and thus do not depend on the use of an FSM.

Controllability and observability problems can be avoided if some necessary
and sufficient conditions hold [2,3]. However, due to the restrictive nature of
these conditions, controllability and observability problems often cannot be
avoided and there is then the need to overcome these problems via coordi-
nation among remote testers during the application of a given test sequence.
The coordination among testers is facilitated by using (external) coordination
channels through which the testers can send (external) coordination messages
(see, for example, [1,16]). For instance, to resolve the above controllability
problem, a coordination channel from the tester at port i to the tester at port
j is introduced through which the tester at port i, by sending a coordination
message, notifies the tester at port j that it should send its input. In most
cases, the use of coordination message exchanges to overcome observability
problems in a given test sequence can be avoided by appending additional
test subsequences to the test sequence [15]. Therefore, we will focus only on
the controllability problem in the rest of the paper.

The use of coordination messages can lead to delays in testing and there
has thus been much interest in minimizing the number of such coordination
messages in order to overcome any controllability problems that may occur
(see, for example, [4,9,14,15,17]). However, there is a cost associated with
introducing coordination channels through which coordination messages can
be sent and this cost depends on the number of channels, between the testers,
that are required. The cost of setting up coordination channels can be more
important than that of sending coordination messages and once a channel
is set up, one could use it for exchanging as many coordination messages as
necessary rather than incurring the cost of setting up additional channels. In
such cases, it is desired to use as few coordination channels as possible, in
contrast to exchanging as few coordination messages as possible.

The problem considered essentially corresponds to reducing the cost of setting
up the test infrastructure when there are physically distributed ports. Typi-
cally, a distributed test architecture consists of several concurrently operating
testers each of which executes a partial test sequence, which is a projection
of the global test sequence that comprises only those messages which can be
observed at the port assigned to the particular tester. The joint execution of
the global test by sequence the testers is controlled by a Test Coordination
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Procedure (TCP). In order to ensure that the global view on the SUT dur-
ing testing can be inferred it is sufficient to introduce coordination messages
into the partial test sequences executed by the testers. The complexity of the
TCP increases with the number of testers since this introduces the cost of
setting up the testers and the channels between these testers [18,19]. Once
the test infrastructure is in place, the cost of sending individual messages be-
tween the testers may be very low in which case we want to minimize the cost
of deploying the test infrastructure. Since the number of testers is fixed, the
only opportunity for minimizing this cost is through reducing the number of
channels between the testers.

This paper investigates the problem of finding a minimum number of channels
such that we can overcome controllability problems by sending coordination
messages through these channels. First we assume that for a message to be
sent from tester ti to tester tj we require a channel between ti and tj : we do
not allow this to go via another tester. We then extend this to the case where
coordination messages can be sent via other testers. The problem of mini-
mizing the number of channels has previously been considered and a greedy
algorithm was proposed which adapts the test sequence generation method
of [10] to distributed testing. This algorithm attempts to minimize the num-
ber of coordination channels by augmenting the data structure used in [10]
and by incremental inclusion of channels required to overcome controllability
problems [11].

In this paper we consider three instances of the problem. The first problem is
where we have a test sequence that we wish to apply in testing and we want to
use a minimum number of channels between testers in order to overcome the
controllability problems in this test sequence. We then consider the problem of
finding a set of channels that allows us to overcome controllability problems
in any test sequence. This second problem corresponds to the situation in
which we will be testing from an FSM but do not know in advance which
test sequences will be used, possibly because an on-the-fly approach to test
generation is being applied. Finally, we consider the problem of finding a test
sequence that achieves a particular test objective and in doing so allows fewest
channels to be used. We approach this third problem by defining a directed
graph in which paths correspond to test sequences and the cost of a path is
the size of a set of channels whose use allows controllability problems to be
overcome in this sequence.

The paper differs from [11] in the following ways. The approach of [11] adapts
one particular test generation algorithm [10] in an attempt to minimize the
number of channels required. It initially applies the algorithm of [10] and so
tries to produce a test sequence in which we do not require channels. If this
fails then it adds channels in an incremental manner until the test sequence
can be produced. The approach is thus a heuristic, which is based on a greedy
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algorithm, that generates one particular type of test sequence. In contrast,
we give exact methods for three general scenarios. While the first problem
we consider is NP-hard, its complexity depends on the number of ports of
the FSM and does not depend on the number of states it has or the size of
the SUT. In almost all cases the number of ports will be small, even if there
are many states, and this will allow the problem to be solved exactly. If this
problem cannot be solved exactly then there is a polynomial time heuristic
with an approximation ratio of log n where n is bounded above by the length
of the path being considered. Note that in contrast [11] gives no information
about the accuracy of the heuristic that they employ.

The paper is structured as follows. Section 2 describes multi-port FSMs and
the distributed test architecture. In Section 3 we differentiate unidirectional
and bidirectional channels between pairs of testers and consider the following
problems: In Section 3.1 we show how we can find a minimum set of channels
whose use can overcome controllability problems in a given test sequence. In
Section 3.2 we then show how this can be adapted to produce a minimum set of
channels whose use allows us to overcome controllability problems in any test
sequence. In Section 3.3 we explore the third scenario, in which there is a test
objective and we wish to find a minimum set of channels r and a test sequence
z̄ such that z̄ achieves the test objective, it is possible to execute z̄ without
encountering controllability problems if we have channel set r, and there is no
smaller set of channels which allows us to achieve the test objective without
introducing controllability problems. In Section 4, we consider the same three
problems in the context of transitive channels between testers. Finally, in
Section 5, conclusions are drawn.

2 Preliminaries

This section describes the distributed test architecture and multi-port FSMs
and gives the notation we use.

2.1 Multi-port finite state machines

Let the set P = [1, n](= {1, . . . , n}) represent the ports of a multi-port FSM
with n > 1 ports. A (deterministic) multi-port FSM M with n > 1 ports is
defined by a tuple (S, X, Y, δ, λ) in which:

• S is the finite set of states of M where s0 ∈ S is the initial state of M ;
• X =

⋃n
i=1 Xi is the finite input alphabet of M , where Xi is the input alphabet

of port i, Xi ∩ Xj = ∅ for all i, j ∈ [1, n], i 6= j;
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• Y =
∏n

i=1(Yi∪{−}) is the finite output alphabet of M , where Yi is the output
alphabet of port i, Yi ∩ Yj = ∅ for all i, j ∈ [1, n], i 6= j, and − means null
output;

• δ is the transition function of type S × X → S; and
• λ is the output function of type S × X → Y .

A transition t of an FSM M is a triple (s, s′, x/y), where s, s′ ∈ S, x ∈ X,
and y ∈ Y such that δ(s, x) = s′, λ(s, x) = y. Note that y ∈ Y is a vector
of outputs, i.e., y = 〈o1, o2, . . . , on〉 where oi ∈ Yi ∪ {−} for i ∈ [1, n]. s
and s′ are the starting state and the ending state of t, denoted start(t) and
end(t), respectively. The input/output pair x/y is the label of t. The set of all
transitions of M is denoted T .

We will use the following notation: Given a transition t = (s, s′, x/y),

• port(x) = i if x ∈ Xi

• inport(t) = port(x)
• ports(x/y) = {port(x)} ∪ {i|oi ∈ Yi, y = 〈o1, o2, . . . , on〉, i ∈ [1, n]}
• ports(t) = ports(x/y)

A variable name has a bar over it (for example, x̄) if this variable represents a
sequence and ǫ denotes the empty sequence. A sequence is represented by list-
ing its elements. For example abc represents the sequence with three elements:
a then b and then c.

A path ρ̄ = t1 t2 . . . tk (k ≥ 1) is a finite sequence of transitions such that if
k ≥ 2 then end(ti) is start(ti+1) for all i ∈ [1, k − 1]. Path ρ̄ is said to start
at the state start(t1). When the ending state of the last transition of path ρ̄1

is the starting state of the first transition of path ρ̄2, we use ρ̄1ρ̄2 to denote
the concatenation of paths ρ̄1 and ρ̄2. The label of a path ρ̄ = (s1, s2, x1/y1)
(s2, s3, x2/y2) . . . (sk, sk+1, xk/yk) (k ≥ 1) is the sequence of input/output
pairs x1/y1x2/y2 . . . xk/yk, which is called an input/output sequence. The in-
put portion and output portion of an input/output sequence x1/y1x2/y2 . . .
xk/yk are the input sequence x1x2 . . . xk and output sequence y1y2 . . . yk, re-
spectively. The input sequence x1 . . . xk (or input/output sequence x1/y1x2/y2

. . . xk/yk) is said to label ρ̄. Note that we call a sequence of input/output
pairs x1/y1x2/y2 . . . xk/yk, or x̄/ȳ (x̄ = x1 . . . xk and ȳ = y1 . . . yk) or any
combination of these an input/output sequence.

2.2 The distributed test architecture and controllability problems

In distributed testing, a distributed test architecture is used where a tester
is placed at each port of the system under test (SUT) N whose externally
observable behavior is modeled by a multi-port FSM M . This is illustrated in
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Fig. 3. A system with distributed testers

Figure 3. In this architecture, remote testers are expected to coordinate the
application of a test to N . However, they cannot directly communicate with
one another and there may be no global clock. These requirements can lead
to controllability problems. Let us suppose that in testing N the input x at
port i is expected to lead to output o at port i only and this is to be followed
by the input of x′ at port j 6= i. Then we have a controllability problem since
the tester at port j does not observe either the input x or output generated
by N in response to x and so does not know when to send input x′ to N .
In general, given an FSM M and input/output sequence x1/y1x2/y2 . . . xk/yk

of M , a controllability (synchronisation) problem occurs between xi/yi and
xi+1/yi+1, if port(xi+1) 6∈ ports(xi/yi).

Two consecutive transitions in a path ρ̄ (or two adjacent transitions in an FSM
M) ti and ti+1 whose labels are xi/yi and xi+1/yi+1, form a synchronisable pair
of transitions if ti+1 can follow ti without causing a synchronisation problem.
Any (sub)sequence of transitions in which every pair of consecutive transi-
tions is synchronisable is called a synchronisable transition (sub)sequence. An
input/output sequence is synchronisable if it is the label of a synchronisable
transition sequence.

If there is a synchronisation problem between xi/yi and xi+1/yi+1 then xi+1

cannot be applied after xi when testing in the distributed test architecture
since the tester at port(xi+1) cannot know when to apply xi+1. In general, the
solution to the synchronisation problem is to insert a coordination message
exchange relating to controllability between xi/yi and xi+1/yi+1 such that the
tester at a port j ∈ ports(xi/yi) notifies the tester at port(xi+1) to send its
input to N [1]. However, this solution requires an (external) coordination
channel from the port j ∈ ports(xi/yi) to port(xi+1). In the following sections
we study the problems of minimizing the number of such channels.

3 Using bidirectional channels

It is normal to place channels between the testers and in this section we
assume that two testers can only communicate if they are linked by a channel.
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In Section 4 we consider the case where a tester t1 can send a message to a
tester t2 via other testers. In this section we concentrate on the case where the
channels allow communication in both directions, since most networks have
this property, but indicate how the techniques can be adapted to channels in
which messages can only pass in one direction.

3.1 Adding channels to overcome problems in a given test sequence

In this section we assume that we are to apply the test sequence z̄ = x1/y1 . . .
xk/yk, and we wish use a minimum number of channels so that any controlla-
bility problems can be overcome in z̄.

The first observation is that we can identify each of the consecutive pairs
xi/yixi+1/yi+1 in z̄ such that the input of xi+1 leads to a controllability problem
and so we need to add a coordination message after xi/yi in z̄. Informally,
there is a controllability problem if the port at which xi+1 is to be sent was
not involved in the previous input/output pair xi/yi. For each such pair we
let (P (i), p(i + 1)) denote the ordered pair such that: P (i) is ports(xi/yi) and
p(i+1) is port(xi+1). That is, there is a controllability problem if we have that
p(i + 1) 6∈ P (i).

Definition 1 Given input/output sequence z̄ = x1/y1 . . . xk/yk we let cp(z̄) =
{(P (i), p(i + 1))|1 ≤ i < k}.

In order to overcome controllability problems in z̄, for each (P (i), p(i + 1)) ∈
cp(z̄) we need a channel between some port in P (i) and the port p(i+1). Given
a pair (P, p) in which P ⊆ P and p ∈ P we let links(P, p) = {(p′, p)|p′ ∈ P}.

Given (P (i), p(i + 1)) ∈ cp(z̄) we therefore let Ci = links(P (i), p(i + 1)) be
the set of unordered pairs (p, p(i + 1)) such that p is in P (i): this is the set of
channels such that the inclusion of any one of these is sufficient to overcome
the controllability problem caused by following xi/yi by xi+1/yi+1. We can
bring the notation together to give a sufficient condition for a set C ⊆ P ×P
of channels to allow us to overcome the controllability problems in z̄, where a
channel between the testers at ports p and p′ is represented by the unordered
pair (p, p′).

Proposition 1 Given input/output sequence z̄, the set C of channels can
be used to overcome the controllability problems in z̄ if and only if for all
(P (i), p(i + 1)) ∈ cp(z̄) we have that Ci ∩ C 6= ∅.

Proof
This follows from the fact that the controllability problem for some xi/yixi+1/yi+1
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can be overcome if and only if we have a channel from the set Ci. 2

It is therefore sufficient to find the Ci and choose a set C of channels such that
C contains at least one element of each Ci. This is an instance of the following
problem.

Definition 2 (Hitting Set) Given subsets A1, . . . , Aj of a finite set Σ, A ⊆
Σ is a hitting set if for all 1 ≤ i ≤ j we have that A ∩Ai 6= ∅. The hitting set
problem is to find some smallest hitting set A for a given A1, . . . , Aj.

The hitting set problem is known to be NP-hard [12] and so it is not surprising
that our problem is also NP-hard.

Theorem 1 Given an input/output sequence z̄ the problem of finding a small-
est set of channels that can be used to overcome controllability problems in z̄
is NP-hard.

Proof
We will prove this by reducing the hitting set problem to an instance of our
problem. We thus assume that we want to find a smallest hitting set A for
some non-empty A1, . . . , Aj and we let A1∪ . . .∪Aj = {a1, . . . , an}. We let the
port set be {p1, . . . , pn, pn+1} and for all 1 ≤ i ≤ j we define two input/output
pairs:

(1) x1
i /y

1
i where x1

i is input at port pk for some ak ∈ Ai and y1
i has output at

every port pk such that ak ∈ Ai;
(2) x2

i /y
2
i where x2

i is input at port pn+1 and y2
i has output at every port.

Now consider the input/output sequence z̄ = x1
1/y

1
1x

2
1/y

2
1 . . . x1

j/y
1
jx

2
j/y

2
j . It

is clear that no controllability problems are caused by subsequences of the
form x2

i /y
2
i x

1
i+1/y

1
i+1 since y2

i contains output at every port. Thus, the only
controllability problems occur between pairs of the form x1

i /y
1
i x

2
i /y

2
i . Further,

a channel can be used to overcome the controllability problem in such a pair
if and only if it connects a port pk such that ak ∈ Ai to port pn+1. Thus, a set
A is a hitting set for A1, . . . , Aj if and only if the set {(pk, pn+1)|pk ∈ A} of
channels can be used to overcome the controllability problems in z̄. Thus, if we
can find a minimum set of channels to overcome the controllability problems
in z̄ then we have solved this instance of the hitting set problem. Finally, we
can note that z̄ and an FSM that has a path with input/output portion z̄ can
be produced in polynomial time. 2

Note that the size of the problem relates to the number of ports of the SUT,
rather than the number of states of an FSM specification. Thus, if we consider
the number of states of the FSM we find that the complexity is of O(1). Where
the number of ports is not too large, it should therefore be possible to solve
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this problem using exhaustive enumeration. It seems likely that in practice
the number of ports will often allow this problem to be solved exactly.

While the hitting set problem is NP-hard, heuristics for this problem and its
dual, the set cover problem, have been studied. In particular, it has been found
that greedy algorithms are effective, having an approximation ratio of log n
where n is the number of sets [5] and so is bounded above by the length of
the input/output sequence z̄.

We now outline a simple greedy algorithm that might be used if the size of
the problem requires us to use approximations.

Algorithm 1 A Greedy Algorithm
Input sets C1, . . . , Cj.
Let C = ∅ and let CL = {C1, . . . , Cj}
while CL 6= ∅ do

For all (p, p′) ∈
⋃j

i=1 Ci, let count(p, p′) denote the number of sets from
CL that contain (p, p′)
Choose some element (p, p′) that maximizes count(p, p′)
Set C = C ∪ {(p, p′)} and remove from CL all sets that contains (p, p′)

end while
Output C

It is straightforward to adapt this technique to the case where messages can
only pass in one direction through a channel. In this case, a channel is repre-
sented by an ordered pair and thus given a test sequence and a pair (Pi, p(i+1))
we require a channel from a port in Pi to p(i + 1). The problem thus remains
an instance of the hitting set problem but with ordered pairs rather than un-
ordered pairs and the greedy algorithm operates in a similar manner to the
bidirectional case.

We now consider the case where we do not know the test sequence in ad-
vance and so wish to be able to use any test sequence without introducing
controllability problems.

3.2 Adding channels to overcome problems in any test sequence

We have seen how, for a given test sequence, it is possible to find a smallest set
of channels that will allow us to overcome all controllability problems in the
test sequence. However, it may not be possible to know the test sequence to
be used before implementing the test infrastructure, and where this is the case
we are interested in a different problem. This problem is to find some smallest
set of channels which will allow us to overcome controllability problems in any
test sequence that might be used.
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The approach described in this section adapts that given in Section 3.1. Essen-
tially, we identify all pairs of adjacent transitions tt′ in M . For each such pair
we decide whether there is a controllability problem introduced by following
t with t′ and, if there is, determine the set of channels that would allow this
controllability problem to be overcome. We can then phrase our problem as
an instance of the hitting set problem.

Given an FSM M , we let A(M) denote the set of adjacent transition pairs in
M . This is defined by A(M) = {(t, t′) ∈ T × T |end(t) = start(t′)}. We can
now define the set cp(M) of adjacent transition pairs of M in which there can
be controllability problems and the sets of pairs of ports to be considered.

Definition 3 Given multi-port FSM M with transition set T we have that:

(1) cp(M) = {(t, t′) ∈ A(M)|inport(t′) 6∈ ports(t)}.
(2) ReqC(M) = {{p} × P |∃(t, t′) ∈ cp(M)s.t.p = inport(t′) ∧ P = ports(t)}

Proposition 2 The set C ⊆ P × P of channels can be used to overcome
controllability problems in any test sequence for M if and only if for all Ci ∈
ReqC(M) we have that Ci ∩ C 6= ∅.

Proof
First assume that for all Ci ∈ ReqC(M) we have that Ci ∩ C 6= ∅. Here
it is sufficient to observe that for every pair of adjacent transitions tt′ of M
we have that either no controllability problems are introduced by following t
by t′ or ReqC(M) contains a set Ci of channels such that the inclusion of a
channel from Ci allows t to be followed by t′ without introducing controllability
problems.

Now assume that the set C of channels can be used to overcome controllability
problems in any test sequence for M . Then for each Ci ∈ ReqC(M) there is
some pair tt′ of consecutive transitions such that it is possible to follow t by t′

without causing a controllability problem if and only if C contains a channel
from the set Ci and so the result follows. 2

We therefore have that, for an FSM M , we can construct ReqC(M) and then
solve the corresponding instance of the hitting set problem. The resulting set
of channels is a smallest set of channels whose use allows us to overcome
controllability problems in any test sequence. Again, it is straightforward to
adapt this to the use of channels that only allow messages to pass in one
direction by using unordered pairs rather than ordered pairs.
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3.3 Finding a test sequence that requires fewest channels

In Section 3.1 we assumed that we have been given a test sequence to apply
and wish to choose a minimum number of channels to overcome controllability
problems in this test sequence. In Section 3.2 we considered the other extreme,
in which we do not know what test sequences will be used and so require the
use of a smallest set of channels that can overcome controllability problems in
any test sequence that may be selected from an FSM M . In this section we
consider a problem that lies between these: we have been given a test objective
and wish to find an optimal test sequence and a smallest set of channels. Here,
test sequence z̄ = x̄/ȳ and set C of channels is optimal if C can be used to
overcome controllability problems in z̄ and there is no test sequence z̄′, that
achieves the test objective, whose controllability problems can be overcome
using fewer channels.

The approach will be to devise a directed graph in which we represent possi-
ble test sequences by paths. There will be multiple copies of a state s, each
copy s(t, r) is a vertex representing the state s having just been reached by
transition t and r being the set of channels that are being used.

We only ever add an edge that represents a transition t′ from vertex s(t, r)
if we can follow t by t′. Let us suppose that start(t′) is state s and end(t′)
is state s′. There are then two cases. If we can follow t by t′ without causing
any controllability problems, by using only the channels that are in r, then
there is an edge from vertex s(t, r) to vertex s′(t′, r) since we do not have
to add additional channels. Naturally, this is the case if and only if either
inport(t′) ∈ ports(t) or there is some (p, p′) ∈ r such that p′ = inport(t′) and
p ∈ ports(t). If we cannot follow t by t′ without causing any controllability
problems, by using only the channels in r, we find the set of channels whose
use can overcome this controllability problem and for each such channel c
there is an edge from vertex s(t, r) to vertex s′(t′, r ∪ {c}).

We now define the directed graph G = (V, E) that will form the basis for test
sequence generation. First, we define the vertex set V . Note, here we give all
possible vertices: it is possible that some are unreachable and so a smaller
directed graph could be generated through, for example, producing it using a
breadth-first search. There is thus scope for finding more efficient methods for
generating G but this is not a problem we consider in this paper.

(1) For each state s, set r of channels, and transition t with ending state s, V
contains a copy of s called s(t, r). This represents the situation in which
we have already included the cost of adding the channels in r, we are in
state s, and the previous transition was t.

(2) We include the special vertex s0, which represents being in the initial
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state, not having added any channels, and having not yet applied any
test input.

We can now define the set of edges for G by stating which edges are introduced
for a transition t′.

(1) If t′ is a transition with starting state s, label x/y and ending state s′

and s(t, r) is a vertex of G then we add an edge from s(t, r) representing
t′ using the following rules:
(a) If it is possible to follow t by t′ without introducing a controllability

problem, given the channel set r, then the edge has label x/y, ends
in s′(t′, r) and has cost 0.

(b) If it is not possible to follow t by t′ without introducing a control-
lability problem, given the channel set r, then for every channel c
from a port in ports(t) to inport(t′) there is an edge from s(t, r) to
s′(t′, r ∪ {c}) and this edge has label x/y and cost 1. Here the cost
reflects the fact that we require an additional channel.

(2) If s = s0 is the starting state of t′ then we include an edge from s0 to
s′(t′, ∅) that has label x/y and cost 0. This represents starting testing
with the input from t′.

It is clear that if we follow a path from s0 to a vertex s(t, r), the cost is the
number of channels introduced into r.

Proposition 3 Let us suppose that ρ̄ is a path of G that has starting vertex
s0, label z̄, and ending vertex s(t, r). Then ρ̄ has cost |r|.

Proof
This follows from the construction of G. 2

We can now prove that G has the expected properties. The following two
results show that the paths of G capture the possible combinations of test
sequences and channel sets that cause no controllability problems.

Proposition 4 Let us suppose that ρ̄ is a path of G that has starting vertex s0,
label z̄, and ending vertex s(t, r). Then it is possible to apply the input portion
of z̄ in testing without causing controllability problems if we have channel set
r.

Proof
Let z̄ = x1/y1 . . . xk/yk and let t1 . . . tk denote the corresponding sequence
of transitions. Thus ρ̄ = (s0, s1(t1, r1)) . . . (sk−1(tk−1, rk−1), sk(tk, rk)) for some
states s1, . . . , sk and r1, . . . , rk with rk = r. Proof by contradiction: assume
that it is not possible to apply x1 . . . xk without causing a controllability prob-
lem if we have the channels in r and let 1 ≤ i < k be the first value such
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that xi/yi cannot be followed by xi+1 without causing a controllability prob-
lem. Since ri ⊆ r we must have that ri does not contain a channel between
port(xi+1) and a port in ports(xi/yi). By the construction of G we there-
fore know that the edge from si(ti, ri) to si+1(ti+1, ri+1) must be such that
ri+1 = ri ∪ {c} for a channel c between port(xi+1) and a port in ports(xi/yi).
This provides a contradiction and so the result follows. 2

Proposition 5 Let us suppose that z̄ is the label of a path t1 . . . tk in M
that has starting state s0, ending state s and it is possible to apply the input
portion of z̄ ∈ L(M) in testing without causing controllability problems if we
have channel set r but not if we have channel set r′ for any r′ ⊂ r. Then there
is a path of G that has starting vertex s0, label z̄, and ending vertex s(tk, r).

Proof
We will proceed by proof by induction on the length of z̄. Clearly the result
holds for the base cases of sequences of length 0 and 1. Inductive hypothesis:
assume the result holds for all sequences of length less than k, k > 1, and
assume that z̄ has length k. Thus, z̄ = x1/y1 . . . xk/yk for some x1, . . . , xk and
y1, . . . , yk. Let z̄′ = x1/y1 . . . xk−1/yk−1 and so z̄ = z̄′xk/yk.

By the inductive hypothesis, there is a path of G that has starting vertex s0,
label z̄′, and ending vertex sk−1(tk−1, r

′′) for some r′′ ⊆ r. There are now two
cases.

(1) If port(xk) ∈ ports(xk−1/yk−1) or there is some channel c = (port(xk), p) ∈
r′′ such that p ∈ ports(xk−1/yk−1) then there is a path of G that has start-
ing vertex s0, label z̄, and ending vertex sk(tk, r

′′). In addition, we must
have that r = r′′ and so the result follows.

(2) Otherwise there is a channel c = (port(xk), p) such that {c} = r \ r′′

for some p ∈ ports(xk−1/yk−1). By definition, G contains an edge from
sk−1(tk−1, r

′′) to sk(tk, r
′′ ∪ {c}) as required.

2

These results tell us that for a given input/output sequence z̄ we can de-
termine a minimum set of channels that can be added in order to overcome
controllability problems in z̄: we find the paths of G from s0 that have label z̄
and choose some minimum cost path. The challenge now is to represent a test
objective using G in a manner that allows us to express test generation as an
optimization problem. In this section we consider one simple test objective:
find a test sequence that executes a given transition t.

In G, the nodes of the form s(t, r) represent situations in which t has just
been executed. Let us suppose that ρ̄ is a minimum cost path in G from s0

to a vertex of the form s(t, r), let s(t, r1) denote the ending vertex of ρ̄, and
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let z̄ be the label of ρ̄. Then r1 denotes a minimum size set of channels that
allows us to execute z̄ without introducing controllability problems. We thus
require a minimum cost path in G from s0 to some s(t, r). We can represent
the problem of finding such a path as a directed graph optimization problem.

Given G and transition t let Gt denote the directed graph formed from G by
adding a new vertex vt and an edge from each vertex of the form s(t, r) to vt,
such edges being given cost 0.

Proposition 6 An input/output sequence z̄ is a sequence that allows transi-
tion t to be executed with the addition of a minimum number of channels, in
order to overcome controllability problems, if and only if z̄ is the label of a
minimum cost path from s0 to vt in Gt.

Proof
Note that a path in G from s0 to some s(t, r) has cost |r|. In addition, it is
clearly sufficient to only consider paths of M that end in t.

First assume that z̄ is a sequence that allows t to be executed with the ad-
dition of a minimum number of channels, in order to overcome controllability
problems. Let r denote some such minimum set of channels. By Proposition 5,
there is a path in G from s0 to s(t, r) with label z̄ and so there is a path from
s0 to vt with cost |r| and label z̄ . By Proposition 4, if ρ̄ is a path of G that has
starting vertex s0, label z̄, and ending vertex s(t, r) then it is possible to apply
the input portion of z̄ in testing without causing controllability problems if
we have channel set r. Thus, by the minimality of z̄ there is no path from s0

in G to a vertex s(t, r′) for a set r′ of channels such that |r′| < |r| and thus z̄
is the label of a minimum cost path from s0 to vt as required.

Now assume that z̄ is the label of a minimum cost path from s0 to vt and we
require to prove that z̄ is a sequence that allows transition t to be executed
with the addition of a minimum number of channels, in order to overcome
controllability problems. Let r denote some minimum set of channels that
can be used with z̄ and thus one minimum cost path from s0 to vt passes
through vertex s(t, r). Proof by contradiction: assume that z̄′ is a sequence
that allows transition t to be executed with the addition of a set r′ of channels
with |r′| < |r|. By Proposition 5, there is a path in G from s0 to s(t, r′) and
thus to vt and clearly this has a lower cost than the path with label z̄ that
reaches vt by passing through s(t, r), providing a contradiction as required. 2

Test generation for other criteria is left for future work. However, it is relatively
straightforward to adapt G in order to represent the problem of finding a path
that includes a given path ρ̄ using fewest channels. If the start state of ρ̄ is
s0 then the problem reverts to that described in Section 3.1. If s 6= s0 is the
start state of ρ̄ then for each vertex s(t, r) we can find the smallest number
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c(r, t, ρ̄) of channels we can add to r in order for us to be able to follow t with
ρ̄. The value of c(r, t, ρ̄) can be computed by adapting the approach given in
Section 3.1. We can therefore add a new vertex vρ̄ and an edge from s(t, r) to
vρ̄ with cost c(r, t, ρ̄). Then, a minimum cost path from s0 to vρ̄ represents an
optimal test sequence and set of channels for the given path ρ̄. Importantly,
many test criteria can be represented in terms of including certain paths in a
test sequence.

Now consider the case where a channel allows messages to pass in one direction
only and so channels are represented by ordered pairs. Then a vertex in the
directed graph is in the form s(t, r) where r is a set of ordered pairs rather
than unordered pairs. An edge from s(t, r) representing a transition t′ goes
to a vertex s′(t′, r) if either tt′ is synchronisable or there is a channel in r
from a port in ports(t) to inport(t′). Otherwise, there is an edge from s(t, r)
representing a transition t′ to each vertex s′(t′, r′) such that r′ = r ∪ {(p, p′)}
for p′ = inport(t′) and a port p in ports(t). The optimization problem can
then be handled in an identical manner.

We now consider the case in which a tester can send a message to another
tester via other testers.

4 Transitive channels

In this section we assume that the channels are bidirectional but that a tester
t can send a message to a tester t′ via other testers. For example, t could send
a message to a tester t1, who sends a message to a tester t2 who then sends
the message to t′. Naturally, the methods given in this section can easily be
extended to channels that allow messages in one direction only and can be
adapted in a similar manner to the case already considered.

Let us suppose that we have a set C of channels between the testers, and so
each channel is represented by an unordered pair. Then C defines a relation
between ports: ports p and p′ are related if and only if (p, p′) ∈ C. Let ∼C

denote the transitive reflexive closure of this relation, and thus ports p and p′

are related under ∼C if either p = p′ or there exists (p1, p2), . . . , (pl, pl+1) such
that p = p1, p′ = pl+1 and for all 1 ≤ i ≤ l we have that (pi, pi+1) ∈ C. The
following is clear.

Proposition 7 The testers at ports p and p′ can communicate using the set
C of channels if and only p ∼C p′.

It is clear that ∼C is an equivalence relation and so it defines a partition ℘C

of the set P of ports: two ports p and p′ are in the same set of ℘C if and only
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if p ∼C p′.

In the following, we adapt the solutions for the three problems considered in
Section 3 to the case where a tester can send a message to another tester via
other testers. In the first problem, we wish to apply the test sequence z̄ = x1/y1

. . . xk/yk using a minimum number of channels to overcome the controllability
problems in z̄. For this we want a smallest set C of channels such that for
each (P (i), p(i + 1)) ∈ cp(z̄) there is a port p ∈ P (i) such that p ∼C p(i + 1).
Hence, it is necessary to connect some pair in Ci = links(P (i), p(i + 1)) and
thus we need some set C of channels such that there exists (p, p′) ∈ Ci such
that p ∼C p′. We can now adapt the proposition and the algorithm given in
Section 3.1 as follows:

• replace “we have that Ci∩C 6= ∅” by “we have that there is some (p, p′) ∈ Ci

such that p ∼C p′” in Proposition 1.
• For Algorithm 1, in step 4 define count(p, p′) as the number of sets from CL

that contain a pair (p1, p2) such that p1 ∼C∪{(p,p′)} p2 and in step 6 replace
“contains (p, p′)” by “contains a pair (p1, p2) such that p1 ∼C p2”.

We can extend this to the case where we want a smallest set of channels
that allows any test sequence to be applied without encountering controlla-
bility problems. As in Section 3.2, we base this on the set cp(M) of pairs of
adjacent transitions for which there is a controllability problem. Recall that
ReqC(M) = {{p} × P |∃(t, t′) ∈ cp(M)s.t.p = inport(t′) ∧ P = ports(t)}.

Proposition 8 The set C ⊆ P ×P of channels can be used to overcome con-
trollability problems in any test sequence for M when testers can communicate
via other testers if and only if for all Ci ∈ ReqC(M) we have some (p, p′) ∈ Ci

such that p ∼C p′.

We therefore have that, for an FSM M , we can construct ReqC(M) and then
solve the corresponding optimisation problem. The resulting set of channels is
a smallest set of channels whose use allows us to overcome controllability prob-
lems in any test sequence. It is straightforward to adapt the greedy algorithm
described above.

4.1 Finding a test sequence that requires fewest channels

In this section we consider the following problem: we have been given a test
objective and wish to find an optimal test sequence and a smallest set of chan-
nels where testers can communicate via other testers. We adapt the approach
given in Section 3.3. Again there will be multiple copies of a state s, each
copy s(t, ℘) is a vertex representing the state s having just been reached by
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transition t and ℘ being a partition of the set of ports. We only ever add an
edge that represents a transition t′ from vertex s(t, ℘) if we can follow t by
t′. As we have seen, a set C of channels defines a partition ℘C of the set of
ports. In addition, given a partition ℘ of the set of ports it is possible to find
a smallest set of channels C such that ℘C = ℘.

Proposition 9 Given a partition ℘ of P, a smallest set C of channels such
that ℘C = ℘ has n − |℘| channels.

The following algorithm takes as input a partition ℘ and outputs a set C of
channels such that ℘ = ℘C .

Algorithm 2 Producing channels for a partition

Input set P of ports and partition ℘
Set C = ∅
while ℘C 6= ℘ do

Find some pair (p, p′) of ports such that p and p′ are in the same set in ℘
but in different sets of ℘C .
Add (p, p′) to C

end while
Output C

If C = ∅ then we have the partition, denoted ℘0 = {{p}|p ∈ P} in which each
set is a singleton.

Let us suppose that start(t′) is state s and end(t′) is state s′ and we have
vertex s(t, ℘). There are two cases.

(1) We can follow t by t′ without causing any controllability problems, by
using any set C of channels such that ℘C = ℘. Then there is an edge from
vertex s(t, ℘) to vertex s′(t′, ℘) since we do not have to add additional
channels. Naturally, this is the case if and only if either inport(t′) ∈
ports(t) or there is some π ∈ ℘ and p ∈ ports(t) such that p and inport(t′)
are both in π.

(2) We cannot follow t by t′ without causing any controllability problems,
by using any set C of channels such that ℘C = ℘. Then there is an edge
from vertex s(t, ℘) to vertex s′(t′, ℘′) for all ℘′ that can be formed from
℘ by merging one set π1 ∈ ℘ such that inport(t′) ∈ π1 and another set
π2 ∈ ℘ such that π2 ∩ ports(t) 6= ∅.

We now define the directed graph GT = (V T , ET ) that will form the basis for
test sequence generation. First, we define the vertex set V T . Again, we give
all possible vertices: it is possible that some are unreachable.

(1) For each state s, partition ℘ of the set of channels, and transition t with
ending state s, V T contains a copy of s called s(t, ℘). This represents the
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situation in which we have already included the cost of adding a minimum
set of channels that define ℘, we are in state s, and the previous transition
was t.

(2) We include the special vertex s0, which represents being in the initial
state, not having added any channels, and having not yet applied any
test input.

We can now define the set ET of edges by stating which edges are introduced
for a transition t′.

(1) If t′ is a transition with starting state s, label x/y and ending state s′

and s(t, ℘) is a vertex in V T then we add edges from s(t, ℘) representing
t′ using the following rules:
(a) If it is possible to follow t by t′ without introducing a controllability

problem, given channels that define ℘, then the edge with label x/y
ends in s′(t′, ℘). This edge has cost 0.

(b) Otherwise for every channel c = (p, p′) from a port in ports(t) to
inport(t′) there is an edge from s(t, ℘) to s′(t′, ℘′) for ℘′ formed from
℘ by merging set π1 ∈ ℘ such that p ∈ π1 and set π2 ∈ ℘ such that
p′ ∈ π2. This edge has label x/y and cost 1.

(2) If s = s0 is the starting state of t′ then we include an edge from s0 to
s′(t′, ℘0) that has label x/y and cost 0. This represents starting testing
with the input from t′.

It is clear that if we follow a path from s0 to a vertex s(r, ℘), the cost is the
minimum number of channels that can be used to define ℘.

Proposition 10 Let us suppose that ρ̄ is a path of GT that has starting vertex
s0, label z̄, and ending vertex s(t, ℘). Then ρ̄ has cost n − |℘|.

Proof
This follows from the construction of GT . 2

We now prove that GT has the expected properties. The proofs of the following
two results are similar to those of Propositions 4 and 5 respectively.

Proposition 11 Let us suppose that ρ̄ is a path of GT that has starting vertex
s0, label z̄, and ending vertex s(t, ℘). Then it is possible to apply the input
portion of z̄ in testing without causing controllability problems if we have a
channel set C such that ℘C = ℘ and testers can communicate via other testers.

Proposition 12 Let us suppose that z̄ is the label of a path t1 . . . tk in M
that has starting state s0, ending state s and it is possible to apply the input
portion of z̄ ∈ L(M) in testing without causing controllability problems if we
have channel set C but not if we have channel set C ′ with |C ′| < |C|. Then
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there is a path of GT that has starting vertex s0, label z̄, and ending vertex
s(tk, ℘C).

These results tell us that for a given input/output sequence z̄ we can find an
optimal partition and we can then use Algorithm 2 to find a minimum set
of channels: we find the paths of GT from s0 that have label z̄ and choose
a minimum cost path. We can therefore represent test generation in terms
of an optimization problem and consider the problem of executing a given
transition. Given GT and transition t we let GT

t denote the directed graph
formed from GT by adding a new vertex vt and an edge from each vertex of
the form s(t, ℘) to vt, such edges being given cost 0. The proof of the following
is similar to the proof of Proposition 6.

Proposition 13 An input/output sequence z̄ is a sequence that allows tran-
sition t to be executed with the addition of a minimum number of channels
when testers can communicate via other testers if and only if z̄ is the label of
a minimum cost path from s0 to vt in GT

t .

5 Conclusions

When testing a system that has physically distributed interfaces/ports we
place a tester at each port. Each tester observes only the events at its own
port and as a consequence there can be additional controllability problems. It
is known that these controllability problems can be overcome if we introduce
a network through which the testers can exchange external coordination mes-
sages but the introduction of such a network can increase the cost of testing.
This paper has therefore considered the problem of adding a minimum number
of channels between testers in order to overcome controllability problems.

We have considered three alternative scenarios and corresponding problems.
In the first scenario we have a test sequence that we wish to apply and want to
use a minimum number of channels between the testers in order to overcome
controllability problems in this test sequence. We have shown that this problem
is NP-hard and can be seen as an instance of the hitting set problem. While this
problem is NP-hard, the size of the problem depends on the number of ports of
the SUT, not on the number of states of the model that represents its required
behaviour: it seems likely that in most cases the number of ports is sufficiently
small to produce optimal solutions. In addition, greedy algorithms are known
to be effective for the hitting set problem and have an approximation ratio of
log n, where n is bounded above by the length of the sequence being considered.
The second scenario is that we wish to introduce an external network but do
not yet know what test sequences or test objectives will be used. In this case we
want to find a minimum number of channels that allow controllabilty problems
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to be overcome in any test sequence and it transpires that this can also be
seen as an instance of the hitting set problem.

The third scenario is that we know the test objective but can choose any test
sequence that achieves this. We have shown how a directed graph G can be
devised, based on a finite state machine model of the SUT, in which we can
represent the problem of finding an optimal test sequence and set of channels.
Specifically, each path through G represents a possible test sequence and a set
of channels whose use allows us to overcome all controllabilty problems in that
test sequence. In addition, the cost of a path in G is the number of channels
included in that path. We have investigated one test objective, that we wish to
execute a given transition, and have shown how we can represent the problem
of finding a corresponding test sequence and minimal set of channels in terms
of finding a minimum cost path in an augmented version of G. It seems likely
that many other test criteria can be represented in a similar way.

We have considered three types of networks. In the first two we have that two
testers can exchange external coordination messages through the network if
and only if there is a channel between them. These two cases differ in the
nature of the channel: whether it allows messages in one direction only or in
two directions. In the third type of network two testers can communicate via
other testers.

There remain several possible topics for future work. First, for the situation in
which we have a test criterion, we could consider alternative criteria. Second,
we have only considered testing from deterministic finite state machines and it
would be interesting to investigate alternative formalisms and, in particular,
nondeterminism. Finally, recent work has defined models in which a transition
can be triggered by the SUT receiving input at several ports [8] and similar
problems should exist for such models.
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