30,809 research outputs found

    Ultra-Reliable Low Latency Communication (URLLC) using Interface Diversity

    Full text link
    An important ingredient of the future 5G systems will be Ultra-Reliable Low-Latency Communication (URLLC). A way to offer URLLC without intervention in the baseband/PHY layer design is to use interface diversity and integrate multiple communication interfaces, each interface based on a different technology. In this work, we propose to use coding to seamlessly distribute coded payload and redundancy data across multiple available communication interfaces. We formulate an optimization problem to find the payload allocation weights that maximize the reliability at specific target latency values. In order to estimate the performance in terms of latency and reliability of such an integrated communication system, we propose an analysis framework that combines traditional reliability models with technology-specific latency probability distributions. Our model is capable to account for failure correlation among interfaces/technologies. By considering different scenarios, we find that optimized strategies can in some cases significantly outperform strategies based on kk-out-of-nn erasure codes, where the latter do not account for the characteristics of the different interfaces. The model has been validated through simulation and is supported by experimental results.Comment: Accepted for IEEE Transactions on Communication

    Simulation and Performance Analysis of MP-OLSR for Mobile Ad hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) consist of a collection of wireless mobile nodes which dynamically exchange data without reliance on a fixed base station or a wired backbone network, which makes routing a crucial issue for the design of a ad hoc networks. In this paper we discussed a hybrid multipath routing protocol named MP-OLSR. It is based on the link state algorithm and employs periodic exchange of messages to maintain topology information of the networks. In the mean time, it updates the routing table in an on-demand scheme and forwards the packets in multiple paths which have been determined at the source. If a link failure is detected, the algorithm recovers the route automatically. Concerning the instability of the wireless networks, the redundancy coding is used to improve the delivery ratio. The simulation in NS2 shows that the new protocol can effectively improve the performance of the networks

    Fault-Tolerant Real-Time Streaming with FEC thanks to Capillary Multi-Path Routing

    Get PDF
    Erasure resilient FEC codes in off-line packetized streaming rely on time diversity. This requires unrestricted buffering time at the receiver. In real-time streaming the playback buffering time must be very short. Path diversity is an orthogonal strategy. However, the large number of long paths increases the number of underlying links and consecutively the overall link failure rate. This may increase the overall requirement in redundant FEC packets for combating the link failures. We introduce the Redundancy Overall Requirement (ROR) metric, a routing coefficient specifying the total number of FEC packets required for compensation of all underlying link failures. We present a capillary routing algorithm for constructing layer by layer steadily diversifying multi-path routing patterns. By measuring the ROR coefficients of a dozen of routing layers on hundreds of network samples, we show that the number of required FEC packets decreases substantially when the path diversity is increased by the capillary routing construction algorithm

    Selecting source image sensor nodes based on 2-hop information to improve image transmissions to mobile robot sinks in search \& rescue operations

    Full text link
    We consider Robot-assisted Search &\& Rescue operations enhanced with some fixed image sensor nodes capable of capturing and sending visual information to a robot sink. In order to increase the performance of image transfer from image sensor nodes to the robot sinks we propose a 2-hop neighborhood information-based cover set selection to determine the most relevant image sensor nodes to activate. Then, in order to be consistent with our proposed approach, a multi-path extension of Greedy Perimeter Stateless Routing (called T-GPSR) wherein routing decisions are also based on 2-hop neighborhood information is proposed. Simulation results show that our proposal reduces packet losses, enabling fast packet delivery and higher visual quality of received images at the robot sink

    Timely Updates over an Erasure Channel

    Get PDF
    Using an age of information (AoI) metric, we examine the transmission of coded updates through a binary erasure channel to a monitor/receiver. We start by deriving the average status update age of an infinite incremental redundancy (IIR) system in which the transmission of a k-symbol update continuesuntil k symbols are received. This system is then compared to a fixed redundancy (FR) system in which each update is transmitted as an n symbol packet and the packet is successfully received if and only if at least k symbols are received. If fewer than k symbols are received, the update is discarded. Unlike the IIR system, the FR system requires no feedback from the receiver. For a single monitor system, we show that tuning the redundancy to the symbol erasure rate enables the FR system to perform as well as the IIR system. As the number of monitors is increased, the FR system outperforms the IIR system that guarantees delivery of all updates to all monitors
    corecore