2 research outputs found

    (In-)Secure messaging with the Silent Circle instant messaging protocol

    Get PDF
    Silent Text, the instant messaging application by the company Silent Circle, provides its users with end-to-end encrypted communication on the Blackphone and other smartphones. The underlying protocol, SCimp, has received many extensions during the update to version 2, but has not been subjected to critical review from the cryptographic community. In this paper, we analyze both the design and implementation of SCimp by inspection of the documentation (to the extent it exists) and code. Many of the security properties of SCimp version 1 are found to be secure, however many of the extensions contain vulnerabilities and the implementation contains bugs that affect the overall security. These problems were fed back to the SCimp maintainers and some bugs were fixed in the code base. In September 2015, Silent Circle replaced SCimp with a new protocol based on the Signal Protocol

    Formal Models and Verified Protocols for Group Messaging: Attacks and Proofs for IETF MLS

    Get PDF
    Group conversations are supported by most modern messaging applications, but the security guarantees they offer are significantly weaker than those for two-party protocols like Signal. The problem is that mechanisms that are efficient for two parties do not scale well to large dynamic groups where members may be regularly added and removed. Further, group messaging introduces subtle new security requirements that require new solutions. The IETF Messaging Layer Security (MLS) working group is standardizing a new asynchronous group messaging protocol that aims to achieve strong guarantees like forward secrecy and post-compromise security for large dynamic groups. In this paper, we define a formal framework for group messaging in the F language and use it to compare the security and performance of several candidate MLS protocols up to draft 7. We present a succinct, executable, formal specification and symbolic security proof for TreeKEMB, the group key establishment protocol in MLS draft 7. Our analysis finds new attacks and we propose verified fixes, which are now being incorporated into MLS. Ours is the first mechanically checked proof for MLS, and our analysis technique is of independent interest, since it accounts for groups of unbounded size, stateful recursive data structures, and fine-grained compromise
    corecore