3,836 research outputs found

    Phase Space Invertible Asynchronous Cellular Automata

    Full text link
    While for synchronous deterministic cellular automata there is an accepted definition of reversibility, the situation is less clear for asynchronous cellular automata. We first discuss a few possibilities and then investigate what we call phase space invertible asynchronous cellular automata in more detail. We will show that for each Turing machine there is such a cellular automaton simulating it, and that it is decidable whether an asynchronous cellular automaton has this property or not, even in higher dimensions.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    A Survey of Cellular Automata: Types, Dynamics, Non-uniformity and Applications

    Full text link
    Cellular automata (CAs) are dynamical systems which exhibit complex global behavior from simple local interaction and computation. Since the inception of cellular automaton (CA) by von Neumann in 1950s, it has attracted the attention of several researchers over various backgrounds and fields for modelling different physical, natural as well as real-life phenomena. Classically, CAs are uniform. However, non-uniformity has also been introduced in update pattern, lattice structure, neighborhood dependency and local rule. In this survey, we tour to the various types of CAs introduced till date, the different characterization tools, the global behaviors of CAs, like universality, reversibility, dynamics etc. Special attention is given to non-uniformity in CAs and especially to non-uniform elementary CAs, which have been very useful in solving several real-life problems.Comment: 43 pages; Under review in Natural Computin

    A Mathematical Framework for Agent Based Models of Complex Biological Networks

    Full text link
    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog

    ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    Get PDF
    Background: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, with the goal to gain a better understanding of the system. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. Although there exist sophisticated algorithms to determine the dynamics of discrete models, their implementations usually require labor-intensive formatting of the model formulation, and they are oftentimes not accessible to users without programming skills. Efficient analysis methods are needed that are accessible to modelers and easy to use. Method: By converting discrete models into algebraic models, tools from computational algebra can be used to analyze their dynamics. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Results: A method for efficiently identifying attractors, and the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness, i.e., while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes, and robustness, i.e., small number of attractors
    corecore