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PARALLELIZATION, PROCESSOR COMMUNICATION AND

ERROR ANALYSIS IN LATTICE KINETIC MONTE CARLO∗

GIORGOS ARAMPATZIS† , MARKOS A. KATSOULAKIS‡ , AND PETR PLECHÁČ§

Abstract. In this paper we study from a numerical analysis perspective the Fractional Step
Kinetic Monte Carlo (FS-KMC) algorithms proposed in [1] for the parallel simulation of spatially
distributed particle systems on a lattice. FS-KMC are fractional step algorithms with a time-stepping
window ∆t, and as such they are inherently partially asynchronous since there is no processor com-
munication during the period ∆t. In this contribution we primarily focus on the error analysis of
FS-KMC algorithms as approximations of conventional, serial kinetic Monte Carlo (KMC). A key as-
pect of our analysis relies on emphasizing a goal-oriented approach for suitably defined macroscopic
observables (e.g., density, energy, correlations, surface roughness), rather than focusing on strong
topology estimates for individual trajectories.

One of the key implications of our error analysis is that it allows us to address systematically the
processor communication of different parallelization strategies for KMC by comparing their (partial)
asynchrony, which in turn is measured by their respective fractional time step ∆t for a prescribed
error tolerance.

Key words. Kinetic Monte Carlo method, parallel algorithms, Markov semigroups, operator
splitting, partially asynchronous algorithms, Graphical Processing Unit (GPU)

AMS subject classifications. 65C05, 65C20, 82C20, 82C26

1. Introduction. The simulation of stochastic lattice systems using kinetic Monte
Carlo (KMC) methods relies on the direct numerical simulation of the underlying
Continuous Time Markov Chain (CTMC). In [1] we proposed a new mathematical
and computational framework for constructing parallel algorithms for KMC simula-
tions.The parallel algorithms in [1] are controlled approximations of Kinetic Monte
Carlo algorithms, and rely on first developing a spatio-temporal decomposition of the
Markov operator for the underlying CTMC into a hierarchy of operators correspond-
ing to the particular parallel architecture. Based on this operator decomposition, we
formulated Fractional Step Approximation schemes by employing the Trotter product
formula, which in turn determines the processor communication schedule. The frac-
tional step framework allows for a hierarchical structure to be easily formulated and
implemented, offering a key advantage for simulating on modern parallel architectures
with elaborate memory and processor hierarchies. The resulting parallel algorithms
are inherently partially asynchronous as processors do not communicate during the
fractional time step window ∆t.

Earlier, in [23] the authors also proposed an approximate algorithm, in order
to create a parallelization scheme for KMC. It was demonstrated in [19, 20], that
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boundary inconsistencies are resolved in a straightforward fashion, while there is an
absence of global communications. Finally, among the parallel algorithms tested in
[19], the one in [23] had the highest parallel efficiency. In [1], we demonstrated that the
approximate algorithm in [23] is a special case of the Fractional Step Approximation
schemes introduced in [1]. There we also demonstrated, using the Random Trotter
Theorem [13], that the algorithm in [23] is numerically consistent in the approximation
limit, i.e., as the time step in the fractional step scheme converges to zero, it converges
to a Markov Chain that has the same master equation and generator as the original
serial KMC. The open source SPPARKS parallel Kinetic Monte Carlo simulator,
[20], can also be formulated as a Fractional Step approximation. In this article, the
convergence, reliability and efficiency of all such Fractional Step KMC parallelization
methods is systematically explored by rigorous numerical analysis which relies on
controlled-error approximations in transient regimes relevant to the simulation of
extended systems.

A key aspect of the presented analysis relies on a goal-oriented error approach for
suitably defined macroscopic observables, e.g., density, energy, correlations, surface
roughness. For such physically relevant observables we can obtain error estimates
which are independent of the very high-dimensional size of the simulated spatially
distributed stochastic system. Besides the obtained numerical consistency and relia-
bility of the approximating FS-KMC algorithm there is an additional major practical
point: the bigger is the allowable ∆t, within a desired error tolerance, the less pro-
cessor communication is required; processor communication itself is mathematically
captured by the commutators of the operators involved in FS-KMC. The macroscopic
observables error analysis allows us to estimate the asynchrony in the parallelization
for such observables in terms of the the greatest allowable ∆t, within a given tolerance.

2. Background. We consider an interacting particle system defined on a d-
dimensional lattice ΛN . Naturally, the simulations are performed on a finite lattice
of the size N , however, given the size of real molecular systems it is either necessary
to treat the case N → ∞, e.g., Λ = Z

d, or alternatively any numerical estimates we
obtain need to be independent of the system size N . We restrict our discussion to
lattice gas models where the order parameter or the spin variable takes values in a
compact set, in most cases the set is finite Σ = {0, 1, . . . ,K}. At each lattice site
x ∈ ΛN an order parameter (a spin variable) σ(x) ∈ Σ is defined. The states in Σ
correspond to occupation of the site x ∈ ΛN by different species. For example, if
Σ = {0, 1} the order parameter models the classical lattice gas with a single species
occupying the site x when σ(x) = 1 and with the site being vacant if σ(x) = 0.
We denote {σt}t≥0 the stochastic process with values in the countable configuration
space S = ΣΛN . Microscopic dynamics is described by transitions (changes) of spin
variables at different sites. We study systems in which the transitions are localized
and involve only finite number of sites at each transition step. Mathematically, the
microscopic dynamics, i.e., the continuous time Markov chain (CTMC) is a stochastic
process {σt} defined completely in terms of the local transition rates c(σ, σ′) which
determine the updates (jumps) from any current state σt = σ to a (random) new state
σ′. In the context of the spatially distributed applications in which we are interested
here, the local transition rates will be denoted as

c(σ, σ′) = c(x, ω;σ) , (2.1)

Thus the local dynamics is described by an updating mechanism and corresponding
transition rates c(x, ω;σ) in (2.1), such that the configuration at time t, σt = σ changes
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into a new configuration σx,ω by an update in a neighborhood of the site x ∈ ΛN .
Here ω ∈ Sx, where Sx is the set of all possible configurations that correspond to
an update at a neighborhood Ωx of the site x. For example, if the modeled process
is a diffusion of the classical lattice gas a particle at x, i.e., σ(x) can move to any
unoccupied nearest neighbor y of x, i.e., Ωx = {y ∈ ΛN | |x − y| = 1} and Sx is
the set of all possible configurations Sx = ΣΩx , see [1] for more examples modeling
physicochemical processes..

Realizations of the process are constructed from the embedded discrete time
Markov chain Sn = σtn (see [11]), corresponding to jump times tn. The local transi-
tion rates (2.1) define the total rate

λ(σ) =
∑

x∈ΛN

∑

ω∈Sx

c(x, ω;σ) , (2.2)

which is the intensity of the exponential waiting time for a jump from the state σ.
The transition probabilities for the embedded Markov chain {Sn}n≥0 are

p(σ, σx,ω) =
c(x, ω;σ)

λ(σ)
. (2.3)

In other words once the exponential “clock” signals a jump, the system transitions
from the state σ to a new configuration σx,ω with the probability p(σ, σx,ω). On
the other hand, the evolution of the entire system at any time t is described by the
transition probabilities P (σ, t; ζ) := P (σt = σ |σ0 = ζ) where ζ ∈ S is an initial con-
figuration. The transition probabilities corresponding to the local rates (2.1) satisfy
the Forward Kolmogorov Equation (Master Equation), [15, 4].

In [1] we proposed a mathematical framework for parallelizable approximations
of the KMC algorithm. Rather than focusing on exactly constructing stochastic tra-
jectories in (2.2) and (2.3), we proposed to approximate the evolution of observables
f = f(σ) ∈ Cb(S), i.e., of bounded continuous functions on the configuration space
S. The space of bounded continuous functions, Cb(S), is regarded as a Banach space
with the norm ‖ f ‖∞ = supσ∈S |f(σ)|. Here we consider observables/functions f(σ)
depending on large number of variables σ(x), x ∈ ΛN , such as coverage, surface rough-
ness, correlations, etc., see for instance the examples in Section 5. Alternatively, we
may consider observables depending on infinitely many variables σ(x), x ∈ Λ = Z

d,
to stress the necessity of working with the infinite volume limit, we return to this
perspective in Section 7.

Typically in KMC we need to compute expected values of such observables, that
is quantities such as

u(ζ, t) := E
ζ [f(σt)] =

∑

σ

f(σ)P (σ, t; ζ) , (2.4)

conditioned on the initial data σ0 = ζ. By a straightforward calculation we obtain
that the expected observable (2.4) satisfies the initial value problem

∂tu(ζ, t) = Lu(ζ, t) , u(ζ, 0) = f(ζ) , (2.5)

where the operator L : Cb(S) → Cb(S) is known as the generator of the continuous
time Markov chain, [15], and in the case of (2.1) it is

Lf(σ) =
∑

σ′

c(σ, σ′)[f(σ′)− f(σ)] =
∑

x∈ΛN

∑

ω∈Sx

c(x, ω;σ)[f(σx,ω)− f(σ)] . (2.6)



4 G. Arampatzis, M. A. Katsoulakis, P. Plecháč

We then write (2.4), as the the action of the Markov semi-group etL associated with
the generator L and the process {σt}t≥0, [15], on the observable f

u(ζ, t) = E
ζ [f(σt)] = etLf(ζ) , (2.7)

where E
ζ denotes the expected value with respect to the law of the process {σt}t≥0

conditioned on the initial configuration ζ.
We define a difference operator δxf as an analogue of a derivative. Higher-order

derivative analogues are defined in Section 5 when needed in the error analysis. We
define a corresponding function space, which is necessary in order to set up the semi-
group P = etL when we consider the infinite lattice Λ = Z

d or to obtain estimates
which are independent of the system size N when considering the lattice ΛN in Sec-
tion 5.

Definition 2.1. Let f ∈ Cb(S) then for any x ∈ ΛN we define

δx,ωf(σ) = f(σx,ω)− f(σ) .

We define the norm ‖f‖1 ≡
∑

x,ω ‖ δx,ωf ‖∞ and the space of functions on S = ΣΛN

C1(S) = {f ∈ Cb(S) | ‖f‖1 ≤ Cf where Cf is independent of N } .

Similarly we define the space of functions on S = ΣΛ associated with the infinite
lattice Λ = Z

d

C1(S) = {f ∈ Cb(S) | ‖f‖1 < ∞} .

Because of the estimates in Section 5, see (5.8) and (5.10) in Theorem 5.6, we will
later employ spaces with higher discrete derivatives that will be defined in Section 5.
On the infinite lattice Λ macroscopic observables are all f ∈ C1(S). In the case of
ΛN , macroscopic observables are all f = f(σ) such that ‖f‖1 is independent of the
system size N ; such typical examples are discussed in Section 5.

Typically, the evolution of the particle system on the infinite lattice Λ = Z
d is

well-defined, as demonstrated in the next propositions.
Proposition 2.2. For any f ∈ C1(S) we have that the series

Lf(σ) =
∑

x∈Λ

∑

ω∈Sx

c(x, ω;σ)[f(σx,ω)− f(σ)] ,

converges uniformly and defines a function in Cb(S), provided supx,ω,σ c(x, ω;σ) < ∞.
Furthermore,

‖Lf ‖∞ ≤ sup
x,ω,σ

c(x, ω;σ)‖f‖1 .

Under the boundedness assumptions on the rates, the closure of the operator L defines
a Markov generator for a Markov semigroup P ≡ etL, such that for f ∈ C1(S),
Pf ∈ C1(S) and

‖etLf‖1 ≤ eΓt‖f‖1 ,

where Γ is a constant depending on the rates c(x, ω;σ).
Proof. See [15, Theorem 3.9, pp 27].
Clearly the same results hold for the finite lattice ΛN and the corresponding

high-dimensional configuration space S, where all constants are independent of the
size N .
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3. Towards parallel kinetic Monte Carlo algorithms. In practice, the sam-
ple paths {σt}t≥0 are constructed by the kinetic Monte Carlo algorithm, that is by
simulating the embedded Markov chain defined by (2.2) and (2.3) and advancing the
tine by random time-steps from the exponential distribution.

Implementations are based on the efficient calculation of transition probabilities,
e.g., [2] for Ising models, known as a BKL Algorithm, and in [5] known as Stochastic
Simulation Algorithm (SSA) for reaction systems.

It is evident from formulas (2.2) and (2.3), that KMC algorithms are inherently
serial as updates are done at one site x ∈ ΛN at a time, while on the other hand
(2.2) depends on information from the entire spatial domain ΛN . For these reasons
it appears that KMC cannot be parallelized easily.

However, Lubachevsky, in [17], proposed an asynchronous approach for parallel
KMC simulation in the context of Ising systems, in the sense that different proces-
sors simulate independently parts of the physical domain, while inconsistencies at the
boundaries are corrected with a series of suitable rollbacks. This method relies on the
uniformization of (2.2); thus the approach yields a null-event algorithm, [14], which
includes rejected moves over the entire spatial sub-domain that corresponds to each
processor, see also [7]. A modification in order to incorporate the BKL Algorithm
was proposed in [17], and tested in [12] giving a still asynchronous algorithm, where
BKL-type rejection-free simulations. However, these asynchronous algorithms may
still have a high number of rejections for boundary events and rollbacks, which con-
siderably reduce the parallel efficiency, [22]. Synchronous parallel KMC algorithms
that advance processes over a fixed time-window were proposed in [3], [22], [18], [19].
However, the efficiency is plagued by several costly global communications, [19].

In [1], we adopted the approach of creating a parallel KMC algorithm which
approximates the underlying continuous time Markov chain of the serial algorithm
instead of reproducing its master equation exactly. We proposed a spatio-temporal
decomposition for the Markov operator underlying the KMC algorithm into a hierar-
chy of operators corresponding to the processor architecture. Based on this operator
decomposition we can formulate Fractional Step KMC Approximation schemes by em-
ploying the Trotter product formula. In turn these approximating schemes determine
the Communication Schedule between processors through the sequential application
of the operators in the decomposition, as well as the time step employed in the partic-
ular fractional step scheme. Earlier, in [23] the authors also proposed an approximate
algorithm, in order to create a parallelization scheme for KMC. It was demonstrated
in [19, 20], that boundary inconsistencies are resolved in a straightforward fashion,
while there is an absence of global communications. Finally, among the parallel al-
gorithms tested in [19], the one in [23] had the highest parallel efficiency. In [1], we
demonstrated that the approximate algorithm in [23] is a special case of the Fractional
Step Approximation schemes introduced in [1]. We also demonstrated, using the Ran-
dom Trotter Theorem, [13], that the algorithm in [23] is numerically consistent in the
approximation limit, i.e., as the time step in the fractional step scheme converges to
zero, it converges to a Markov Chain that has the same master equation and gener-
ator as the original serial KMC. Finally, the open source SPPARKS parallel Kinetic
Monte Carlo simulator, [20], also relies on such Fractional Step approximations.

3.1. Fractional time step kinetic Monte Carlo algorithms. In [1] we pro-
posed a class of parallel KMC algorithms that are based on operator splitting of the
Markov generator L which is based on a geometric decomposition of the lattice ΛN .
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Definition 3.1. The lattice ΛN is decomposed into non-overlapping coarse cells
Cm, m = 1, . . . ,M such that, |Cm| = Q = qd, where d is the dimension,

ΛN =

M
⋃

m=1

Cm , Cm ∩Cn = ∅ , m 6= n , N = MQ . (3.1)

The range of interactions is defined as L = maxx∈Cm
{diamΩx}. For a coarse cell

Cm the closure of this set is C̄m = {z ∈ ΛN | |z − x| ≤ L , x ∈ Cm}. The boundary of
Cm is then defined as ∂Cm = C̄m \ Cm.

The closure C̄m thus includes all sites of Cm and all “boundary” lattice sites ∂Cm

which are connected with sites in Cm through particle interactions in the updating
mechanism, see Figure 3.1(a). In many models the value of the interaction range L
is independent of x due to the translational invariance of the model. This geometric
partitioning induces a decomposition of (2.6)

Lf(σ) =
M
∑

m=1

Lmf(σ) , Lmf(σ) =
∑

x∈Cm

∑

x,ω∈Sx

c(ω;σ)[f(σx,ω)− f(σ)] . (3.2)

The generators Lm define a new Markov process {σm
t }t≥0 on the entire lattice ΛN . In

many models such as in catalysis, the interactions between particles are short-range,
[21, 16], and therefore the transition rates c(x, ω;σ) depend on the configuration σ only
through σ(x) and σ(y) with |x − y| ≤ L, where L is small (typically one). Similarly
the new configuration σx,ω involves changes only at the sites in this neighborhood.
Thus the generator Lm updates the lattice sites at most in the set C̄m = {z | |x− z| ≤
L , x ∈ Cm}. Consequently the processes {σm

t }t≥0 and {σm′

t }t≥0 corresponding to
Lm and Lm′ are independent provided C̄m ∩ C̄m′ = ∅. The operator decomposition

∂Ci

∂Ci

∂Ci

∂Ci

Ci

L

(a) Lattice partitioning in (3.3).

C∂
i

Co∂
i

Coo
i

Ci

L L

(b) Sub-lattice partitioning.

Fig. 3.1. Lattice and sub-lattice partitioning. Note we use the notation ∂Ci to denote C̄\C,i.e.,
the interior boundary of Ci.

yields an algorithm suitable for parallel implementation, in particular, in the case of
short-range interactions when the communication overhead can be handled efficiently:
if the lattice ΛN is partitioned into subsets Cm such that diamCm > L, we can group
the sets {Cm}Mm=1 so that there is no interaction between sites in Cm that belong to
the same group. For the sake of simplicity we assume that the lattice is divided into
two sub-lattices described by the index sets I1 and I2 (black/red in each block in
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Fig. 3.1(a)), which in turn induce a corresponding splitting of the generator:

ΛN = Λ1
N ∪ Λ2

N :=
⋃

m∈I1

Cm ∪
⋃

m∈I2

Cm and

L = L1 + L2 :=
∑

m∈I1

L1,m +
∑

m∈I2

L2,m . (3.3)

The decomposition (3.3) has key consequences for simulating the process {σt}t≥0

in parallel, as well as formulating different related algorithms. The processes {σm
t }t≥0

corresponding to the generators L1,m are mutually independent for different m ∈
I1, and thus can be simulated in parallel. Similarly we can handle the processes
belonging to the group indexed by I2. However, there is still local communica-
tion/synchronization between these two groups as there is non-empty overlap between
the groups due to interactions and updates in the sets C̄m ∩ C̄m′ when m ∈ I1 and
m′ ∈ I2 and the cells are within the interaction range L. Mathematically, we can
describe all that through a fractional step approximation of the Markov semigroup
P ≡ etL of the process {σt}t≥0. The operator splitting or equivalently the fractional
step approximation can be also viewed as an alternating dimension approximation
since we solve the evolution of u(σ, t) given as solution of (2.5) by alternating between
evolution of σ’s in the dimensions corresponding to I1 and I2.

The key tool for our analysis are different versions of the Trotter formula, [24, 13],

eTL = limn→∞

[

e
T
n
L1e

T
n
L2

]n

when applied to the operator L = L1+L2 in (3.3). Thus

to reach a time T we define a time step ∆t = h = T
n for a fixed value of n and alternate

the evolution by L1 and L2, giving rise to the Lie splitting approximation for n ≫ 1:

eTL ≈ PL :=
[

e∆tL1e∆tL2
]n

, where ∆t = T
n . (3.4)

To develop a parallelizable scheme we use the fact that the action of the operator L1

(and similarly of L2) can be distributed onto independent processing units, indexed
by m in (3.3),

e∆tL1 =
∏

m∈I1

e∆tL1,m , e∆tL2 =
∏

m∈I2

e∆tL2,m .

Analogously we have the Strang splitting scheme

eTL ≈ PS :=
[

e
∆t
2 L1e∆tL2e

∆t
2 L1

]n

, where ∆t = T
n . (3.5)

From now on, for the notational convenience, we shall also use h to symbolize ∆t.
While operator splitting has been exploited in many classical numerical methods,

e.g.,[6], in our context it offers a rigorous framework for extending simple (determin-
istic) alternating strategies associated with, for example, traditional Lie or Strang
splittings to more elaborate and randomized Processor Communication Schedules, we
refer to Section 6 for a complete discussion.

We characterize the FS-KMC (Fractional Step KMC) algorithm (3.4) as partially
asynchronous since there is no processor communication during the period ∆t ≡ h.
Furthermore, at every h we have only local synchronization between processors, i.e.,
between the sets C̄m∩C̄m′ when m ∈ I1 and m′ ∈ I2. Hence, the bigger the allowable
h in (3.4) or in (3.5) the less processor communication we have, in which case the
error in the approximation (3.4) or (3.5) worsens. This balance between accuracy and
processor communication in algorithms is one of the themes of this article.
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4. Local and global error analysis. The FS-KMC algorithm approximates
the evolution of observables u(σ, t) given by the original semigroup P . We present an
error analysis which focuses on classes of observables such as (2.4) instead of estimat-
ing an approximation of the probability distribution of the process solving Forward
Kolmogorov equation. This perspective is also relevant to practical simulations, where
the estimated quantity is linked to specific observables, and is simulated by the FS-
KMC algorithm.

We first analyze the error for the two cases of deterministic PCS: the Lie splitting
defines a new semigroup (3.4) that we denote PL and similarly PS denotes the semi-
group (3.5) obtained by the Strang splitting. The local error analysis can be treated
in a similar way as it is done for the finite dimensional case when working on the
lattice ΛN by using the property proved in [8]. The estimates for local and global
error follow standard steps and are presented next for completeness. However, for
macroscopic observables that typically arise in the simulation of extended KMC sys-
tems, we prove estimates which are system-size independent in Section 5. Finally, in
Section 7 we present, as a complementing theoretical perspective, the same estimates
on the infinite lattice Λ = Z

d.
Lemma 4.1. Let L be the generator of a strongly continuous contraction semi-

group {etL}t≥0 on the Banach space Cb. Then the operators

Dm(tL) = etL −
m−1
∑

k=0

tk

k!
Lk , m ∈ N

+ (4.1)

satisfy the bound

‖Dm(tL)v ‖∞ ≤
tm

m!
‖Lmv ‖∞, ∀v ∈ Cb (4.2)

Proof. see Jahnke, [8].
Lemma 4.2 (Local Error). Let PL(t) and PS(t) be the schemes (3.4) and (3.5)

associated with the Lie and Strang splittings respectively, and let u(h) = P (h)f be the
solution of (2.5). Then the local error for the Lie splitting is

‖PL(h)f − u(h) ‖∞ ≤ c1‖ [L1,L2]f ‖∞h2 + c2
∑

|m|=3

‖Lm1
1 Lm2

2 f ‖∞h3 , (4.3)

and for the Strang splitting scheme

‖PS(h)f − u(h) ‖∞ ≤ c3‖ [L1, [L1,L2]]f − 2[L2, [L2,L1]]f ‖∞h3

+ c4
∑

|m|=4

‖Lm1
1 Lm2

2 Lm3
1 f ‖∞h4 (4.4)

where [L1,L2] = L1L2−L2L1 denotes the commutator of L1 and L2 and ci, i = 1, ..., 4
are positive constants with ci < 1.

Proof. Using Lemma 4.1 the proof follows the standard finite dimensional ap-
proach based on the expansion of the operator exponential, see, e.g., [8]. For the sake
of convenience we present the calculations in Appendix A.

Remark 4.1. The previous Lemma demonstrates that the commutators between
the operators in the FS-KMC method, capture to leading order the error during pro-
cessor communication occurring at each time instance ∆t = h. It is clear that within
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a given error tolerance, the commutator controls what is the maximum allowable h,
since the larger the time increment is the less processor communication we have. We
return to this issue in Section 6.

After establishing the local truncation error it is straightforward to obtain the
global error estimate.

Theorem 4.3 (Global error). Let PL(t) and PS(t) be the the schemes (3.4) and
(3.5) associated with the Lie and Strang splittings respectively and let u(tn) = P (tn)f
be the exact solution of (2.5). Then the global error at the time T = tn = nh, for the
Lie splitting is bounded by

‖PL(tn)u(0)− u(tn) ‖∞ ≤ C1 max
k=0,...,n

‖ [L1,L2]u(tk) ‖∞h+RL(u)h
2 , (4.5)

where the remainder is given by

RL(u) ≡ RL(u;n, h) = C2 max
k=0,...,n

∑

|m|=3

‖Lm1
1 Lm2

2 u(tk) ‖∞ . (4.6)

and for the Strang scheme

‖PS(tn)u(0)− u(tn) ‖∞ ≤C3 max
k=0,...,n

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞h2

(4.7)

+RS(u)h
3 ,

where

RS(u) = RS(u;n, h) = C4 max
k=0,...,n

∑

|m|=4

‖Lm1
1 Lm2

2 Lm3
1 u(tk) ‖∞ , (4.8)

and C1, C2, C3 and C4 are constants, depending only on T .

Proof. It can be shown by induction that

en = P̃n(h)u(0)− u(tn) =
n−1
∑

k=0

P̃ k(h)
(

P̃ (h)− P (h)
)

P (n−k−1)(h)u(0) .

where P̃ denotes either PL or PS . By the assumptions, the operators L1 and L2

generate strongly continuous contraction semigroups and thus ‖ P̃ k ‖∞ ≤ 1, the global
error is bounded by

‖ en ‖∞ ≤
n−1
∑

k=0

‖
(

P̃ (h)− P (h)
)

u(tn−k−1) ‖∞

≤ n max
k=0,...,n

‖
(

P̃ (h)− P (h)
)

u(tk) ‖∞ .

Using Lemma 4.2, for P̃ = PL and P̃ = PS , to estimate the local error and the fact
that nh = T we obtain the estimates (4.5) and (4.7) for the Lie and the Strang scheme
respectively.
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5. Estimates for macroscopic observables. A primary novelty of the pre-
sented error analysis rests on a goal-oriented error approach for suitably defined
macroscopic observables. On one hand, in Theorem 4.3 we have shown that the
proposed splitting schemes are convergent as the time step h tends to zero. Here we
show that if we restrict the initial data of the problem (2.5) to a special class of func-
tions/observables, then it is possible to show that the error terms are independent of
the system size, in this case of of the lattice size, N . It turns out that this is a broad
class containing some of the most common observables in KMC simulations, such as
mean coverage or spatial correlations, we refer to Section 5.1 below. In Section 6 we
will see the implications of this independence of the error estimates from the system
size, on the selection of the time step ∆t = h in the FS-KMC and therefore on the
processor communication in the parallel algorithm. Macroscopic observables were also
considered in the study of coarse-graining of stochastic interacting particle systems in
[10] and [9].

In order to simplify the notation we suppress the dependence of the discrete
derivative operator δx,ω on ω in Definition 2.1.

Definition 5.1. For x = (x1, . . . , xm) ∈ Λm
N we introduce the notation

δxf(σ) = δx1 . . . δxm
f(σ) = δx1...xm

f(σ) ,

and we refer to it as the discrete derivative of f with respect to x. For example if
x = (x, y) then

δxyf(σ) = δxδyf(σ) = f(σxy)− f(σx)− f(σy) + f(σ) .

Definition 5.2. Let x = (x1, . . . , xm) ∈ Λm
N and f ∈ Cb(S). Then we define the

norm

‖f‖m =
∑

x1∈ΛN

. . .
∑

xm∈ΛN

‖δxf‖∞ ,

and the function space

Cm(S) = {f ∈ Cb(S) |
m
∑

k=1

‖f‖k ≤ Cf where Cf is independent of N} , ∀m ∈ N .

We refer to elements of Cm(S) as macroscopic observables and we will discuss ex-
amples in Section 5.1. We now present the main theorem of this paper, showing that
for such macroscopic observables, or equivalently under smoothness conditions on the
initial data, the global error estimates for the Lie and the Strang schemes are inde-
pendent of the dimension of the system. The proof of this theorem is contained in
the next two subsections.

Theorem 5.3. (a) Let u(t) be the solution of (2.5) with u(0) = f ∈ C3(S).Then
for the global error estimate of Theorem 4.3 on the Lie scheme (3.4) we have

‖PL(tn)u(0)− u(tn) ‖∞ ≤ C1 max
k=0,...,n

‖ [L1,L2]u(tk) ‖∞h+RL(u)h
2 ,

where

‖ [L1,L2]u(tk) ‖∞ < C , and RL(u) < C̃ ,
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where both constants C and C̃ are independent of the system size N . Moreover, if
u(0) = f ∈ C4(S) then for the global error of the Strang scheme

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞ < C , and RS(u) < C̃ ,

where the constants C and C̃ are independent of the system size N .
(b) Many macroscopic observables u(0) = f are not just in Cm(S) but also satisfy a
local bound such as

max
z∈ΛN

‖δzu(0, · )‖∞ + max
x,y∈ΛN

‖ δxyu(0, ·) ‖∞ + max
x,y,z∈ΛN

‖ δxyzu(0, ·) ‖∞ ≤
C

N
. (5.1)

Then the bounds for the commutators become

‖[L1,L2]u(t, · )‖∞ ≤ C
Ld+1

q
, (5.2)

and

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞ ≤ C
L2d+1

q
, (5.3)

where N
M = Q = qd and the constant C is independent of N . The parameters L, M ,

N , q are defined in Definition 3.1, and d is the dimension of the lattice ΛN ⊂ Λ = Z
d.

Remark 5.1. The error independence from the system size, and specifically the
commutator bounds (5.2) and (5.3), see also Remark 4.1, are employed in Section 6, as
means of determining processor communication and asynchrony in the parallelization
of Lie and Strang FS-KMC algorithms, as well as comparing them also to serial (SSA)
KMC simulations, e.g., (6.13).

The proof of Theorem 5.3 is given in Section 5.4, while the supporting results
are proved earlier in Sections 5.2 and 5.3. Next, we discuss typical examples of
macroscopic observables f which are used in KMC simulations and also satisfy the
assumptions of Theorem 5.3.

5.1. Examples of observables. There is a wide class of macroscopic observable
functions in Cm(S), that satisfy

δxf(σ) :=
1

N
φ
(

σ(x + k1), · · · , σ(x+ kℓ)
)

.ki ∈ ΛN , ∀x ∈ ΛN , (5.4)

A class of functions that satisfies (5.4), or more generally (5.1), includes the coverage,
spatial correlations, Hamiltonians and more generally observables of the type

f(σ) =
1

N

∑

y∈ΛN

U
(

σ(y + k1), . . . , σ(y + kℓ)
)

, ki ∈ ΛN .

These functions have the property that their discrete derivatives depend only on a
fixed number of points on the lattice that does not scale with N . Here we show for
specific examples from this class of functions that they belong in Cm(S).

Example 5.1 (Coverage). Let f(σ) = σ̄ = 1
N

∑

x∈ΛN
σ(x), the observable that

measures the mean coverage of the lattice ΛN . Then

δxf(σ) =
1

N
(σx(x)− σ(x)) ,
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and in the case σ(x) ∈ {0, 1} it takes the simple form δxf(σ) =
1
N (1 − 2σ(x)). The

local average over a percentage of the domain, defined as f(σ) = 1
N

∑

x∈A⊂ΛN
σ(x).

is also in the same class.
Example 5.2 (Spatial correlations). Let f(σ; k) = 1

N

∑

x∈ΛN
σ(x)σ(x + k), the

mean spatial correlation of length k. Then, when σ(x) ∈ {0, 1} it takes the form

δxf(σ) =
1

N

(

1− 2σ(x)
)(

σ(x + k) + σ(x − k)
)

.

In these examples it is obvious that f ∈ C1(S). To such functions we can apply
Lemma 5.5 and easily conclude that they belong to Cm(S) for m ≤ m0, where m0

depends on the form of the observable.
Example 5.3. Let f be an observable of type (5.4) with ℓ = 1 and k1 = 0, then

δxδyf(σ) = δx
1

N
φ(σ(y)) =

1

N
φ(σx(y))−

1

N
φ(σ(y)) = 0 , |x− y| > 1 ,

hence f ∈ C2(S). An analogous result holds when ℓ ≥ 1 and ki 6= 0 with |x−y| > c(ℓ),
where the constant depends on ℓ but not on N . Finally, there are macroscopic
observables that are not of the type (5.4) but still satisfy (5.1):

Example 5.4 (Variance). Let f(σ) = 1
N

∑

x∈ΛN
(σ(x) − σ̄)2 = σ̄ − σ̄2. Then

δxf(σ) =
1

N

(

1− 2σ(x)
)

(

1− 2σ̄ +
2σ(x) − 1

N

)

.

It is easy to verify that variance is in C2(S) and satisfies (5.1).

5.2. Bounds on the remainder. In order to establish that the remainders
RL(u), (4.6), or RS(u), (4.8) in Theorem 4.3, are bounded by constants independent
of N we derive estimates for powers of the operators L1, L2 and their compositions
such as L2

1L2. The idea for such estimates is an extension of estimates on L2 acting
on the solution of (2.5), which we present next. First, we prove that L2u is bounded
by the sum of first and second derivatives of u.

Lemma 5.4. Let u be the solution of equation (2.5). Then for the operator L2

the following bound holds

‖L2u(t, · )‖∞ ≤ c1‖u(t, · )‖1 + c2‖u(t, · )‖2 . (5.5)

where c1 and c2 are independent of N . We denote ‖u(t, · )‖1 ≡
∑

x∈ΛN
‖δxu(t, · )‖∞,

and ‖u(t, · )‖2 ≡
∑

x,y∈ΛN
‖δxyu(t, · )‖∞.

Proof. By a straightforward calculation

L2u(t, σ) =
∑

x,y∈ΛN

c(x, σ)c(y, σx)δxyu(t, σ)−
∑

x,y∈ΛN

c(x, σ)δxc(y, σ)δyu(t, σ) ,

and by taking norms on both sides

‖u(t, · )‖∞ ≤ ‖
∑

x∈ΛN

∑

|x−y|≤L

c(x, · )δyu(t, · )‖∞ + c2
∑

x,y∈ΛN

‖δxyu(t, · )‖∞

≤ c1
∑

x∈ΛN

‖δyu(t, · )‖∞ + c2
∑

x,y∈ΛN

‖δxyu(t, · )‖∞ ,
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where the first inequality follows from the boundedness of the rates and the fact that
δxc(y, σ) = 0 when |x − y| > L, see Lemma 5.5, where we show that the derivatives
of the rate functions have compact support that depends only on the length of the
interaction L.

Lemma 5.5. Let c be a rate function with interactions of range L

c(a, σ) = c̃
(

σ(a− L), . . . , σ(a+ L)
)

, a ∈ ΛN ,

then

δxc(a, σ) = 0, ∀x ∈ ΛN with |x− a| > L ,

and

δxyc(a, σ) = 0, ∀x, y ∈ ΛN with |x− y| > 2L+ 1 .

Moreover, for all higher derivatives holds that

δx1δx2 . . . δxn
f(σ) ≡

n
∏

k=1

δxk
f(σ) = 0 , |xi − xj | > 2L+ 1 , i 6= j .

Proof. For the first discrete derivative it is sufficient to observe that if x 6= y then
σy(x) = σ(x). Thus when a has distance from x greater than L the rate function
c(a, σ) is equal to c(a, σx) and the first derivative is zero.

For the second derivative, based on the calculation for the first derivative, we
have

δx

(

δyc(a, σ)
)

= 0 , |y − a| > L ,

or, if we interchange x and y,

δy

(

δxc(a, σ)
)

= 0 , |x− a| > L .

Finally, the second derivative is always zero when |x− y| > 2L+ 1.
For the general case, the proof follows from the fact that δxδyc(a, σ) = δyδxc(a, σ)

and from the following observation

n
∏

k=1
k 6=i,j

δxk

(

δxi
δxj

c(a, σ)
)

= 0 , |xi − xj | > 2L+ 1 , i 6= j ,

which is true by the result for the second derivative.
Proposition 5.6. Let u(t, σ) be the solution of the equation (2.5) with initial

data in C2(S). Then the operator L2 satisfies the bounds,

‖L2u(t, · )‖∞ ≤ C , (5.6)

and

‖u(t, · )‖1 + ‖u(t, · )‖2 ≤ C1‖u(0, · )‖1 + C2‖u(0, · )‖2 ,

where C,C1 and C2 are constants independent of N .
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Proof. We will bound the right hand side of the equation (5.5) thus we need
estimates on the first and the second derivatives of u. For the sake of brevity we use a
vectorial notation Lf = c(σ) · ∇σf(σ) ≡

∑

x c(x, σ)δxf(σ). The governing equations
for u, v1 ≡ δxu, v2 ≡ δyu and w ≡ δxδyu are

∂tu = c(σ) · ∇σu

∂tv1 = c(σ) · ∇σv1 + δxc(σ) · ∇σu(σ
x)

∂tv2 = c(σ) · ∇σv2 + δyc(σ) · ∇σu(σ
y)

∂tw = c(σ) · ∇σw + δyc(σ) · ∇σv1(σ
y) + δxc(σ) · ∇σv2(σ

x) + δxyc(σ) · ∇σu(σ
xy) .

First, we bound the first derivative writing the solution for v(t, σ)

δxu(t, σ) = eLtu(0, σ) +

∫ t

0

e(t−s)L
∑

|y−x|≤N

δxc(y, σ)δyu(s, σ
x) ds . (5.7)

By taking the norms and summing over all x ∈ ΛN we have,

∑

x∈ΛN

‖ δxu(t, · ) ‖∞ ≤
∑

x∈ΛN

‖ δxu(0, · ) ‖∞ + c1

∫ t

0

∑

x∈ΛN

∑

|y−x|≤L

‖ δyu(s, · ) ‖∞ ds .

Setting

ϕ(t) = ‖u(t, · )‖1 =
∑

x∈ΛN

‖ δxu(t, · ) ‖∞ , (5.8)

we obtain

ϕ(t) ≤ ϕ(0) + c̄1

∫ t

0

ϕ(s) ds .

Similarly, for the second derivatives we have, by using Lemma 5.5,

∂tδxyu(t, σ) = Lδxyu(t, σ) +
∑

|z−y|≤L

δyc(z, σ)δxzu(t, σ
y) +

∑

|z−x|≤L

δxc(z, σ)∂yzu(t, σ
x)

+
∑

|z−x|≤L
|z−y|≤L

δxyc(z, σ)δzu(t, σ
xy)χC2L(x, y) ,

where χC2L is the characteristic function and C2L = {(x, y) ∈ Λ2
N | |x−y| < 2L}. The

solution of the above equation is expressed as

δxyu(t, σ) = etLδxyu(0, σ) +

∫ t

0

e(t−s)L

[

∑

|z−x|≤L

δyc(z, σ)δxzu(s, σ
y)

+
∑

|z−y|≤L

δxc(z, σ)∂yzu(s, σ
x)

+
∑

|z−x|≤L
|z−y|≤L

δxyc(z, σ)∂zu(s, σ
xy)χC2L(x, y)

]

ds .
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Thus, by using the contraction property of the semigroup and the fact that the discrete
derivatives of the rates are bounded functions, we have the estimate

‖ δxyu(t, ·) ‖∞ ≤ ‖ δxyu(0, ·) ‖∞ + c1

∫ t

0

∑

|z−x|≤L

‖ δxzu(s, ·) ‖∞ds

+ c2

∫ t

0

∑

|z−y|≤L

‖ δyzu(s, ·) ‖∞ ds

+ c3

∫ t

0

∑

|z−x|≤L
|z−y|≤L

‖ δzu(s, ·) ‖∞χC2L(x, y) ds .

(5.9)

By summing over all x, y ∈ ΛN and setting

ϑ(t) = ‖u(t, · )‖2 =
∑

x,y∈ΛN

‖ δxyu(t, ·) ‖∞ , (5.10)

we obtain

ϑ(t) ≤ ϑ(0) + c̄2

∫ t

0

ϑ(s)ds+ c̄3

∫ t

0

ϕ(s) ds ,

where both c̄2 and c̄3 depend on L but not on N . However, using the standard argu-
ments based on Gronwall inequality extended also for systems of evolution equations
we have

ϕ(t) ≤ c̃1ϕ(0) = c̃1‖u(0, · )‖1 < C1 ,

where the last inequality follows from the assumption that u(0, σ) ∈ C1(S). Similarly
we obtain

ϑ(t) ≤ c̃2ϑ(0) + c̃3ϕ(0) = c̃2‖u(0, · )‖2 + c̃3‖u(0, · )‖1 < C2 ,

where the bound on ϑ(0) follows since the initial data are in C2(S). Finally, we obtain
from Lemma 5.4,

‖L2u(t, · )‖∞ ≤ C1ϕ(t) + C2ϑ(t) ≤ C .

Remark 5.2. The same result can be obtained if we notice that the function
v(t, σ) = L2u(t, σ) satisfies the equation (2.5). Then the solution can be written as

v(t, σ) = etL
2

v(0, σ) and by taking the norm on both sides we get the estimate

‖L2u(t, · )‖∞ ≤ ‖ etL
2

u(0, · ) ‖∞ ≤ ‖ u(0, · ) ‖∞ ≤ C ,

where the second inequality follows from the fact that L2 generates a contraction
semigroup. However, in order to get bounds for quantities like L1L2u, it is sufficient
to observe from Lemma 5.4 that

‖L1L2u(t, · )‖∞ ≤ c1
∑

x∈Λ1
N

y∈Λ2
N

‖δxyu(t, · )‖∞ + c2
∑

x∈Λ1
N

‖δxu(t, · )‖∞

≤ ‖u(t, · )‖1 + ‖u(t, · )‖2
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and the norms on the right hand side are bounded from Proposition 5.6.

Our last goal for this section is to prove that the remainders in the Lie and the
Strang scheme, (4.6) and (4.8) respectively, are independent of the size of the lattice.
To achieve this, we first have to bound third and fourth powers of combinations of
the operators L1 and L2 arising in (4.6) and (4.8). Then, as in Remark 5.2, using a
more general form of Lemma 5.4 it is easy to prove that all relevant combinations of
L1 and L2 are also bounded by constants independent of N .

5.3. Bounds on the commutators. The constants in the local error estimate
derived in Lemma 4.2 involve bounds on the commutators of the splitting operators
L1 and L2. We prove that these commutators are bounded operators on the spaces
Cm(S), independently of the system size N . The error analysis quantifies the intuitive
link of the approximation error to the commutator [L1,L2] of the operators L1 and
L2, see Remark 4.1. As we show next, the commutator is also directly related to the
geometric decomposition and the range of particle interactions.

The error estimates in Lemma 4.2 link the local error to the commutator of the
operators L1 and L2. In principle the commutator can be computed explicitly in
terms of the rates c(x, ω;σ) although general formulae quickly become complicated.
Therefore we give an example for a specific example of single site events, i.e., ω = {x}.
The example also demonstrates a procedure that is used for more involved cases. First
we evaluate the commutators associated with the decomposition of the lattice into
disjoint sub-lattices, Definition 3.1.

Lemma 5.7. Let L1,L2 be two operators defined by

L1f(σ) =
∑

x∈C1

c(x, σ)[f(σx)− f(σ)] , and L2f(σ) =
∑

x∈C2

c(x, σ)[f(σx)− f(σ)] ,

and C1, C2 ⊂ ΛN with dist(C1, C2) > L. Then L1 and L2 commute, i.e., [L1,L2] =
0.

Proof. The proof follows from the straightforward calculation based on the fact
that c(x, σy) = c(x, σ) when x ∈ C1 and y ∈ C2 or vice versa and f(σxy) = f(σyx).
By a direct calculation we get

L1L2f(σ) =
∑

x∈C1

c(x, σ)
[

L2f(σ
x)− L2f(σ)

]

=
∑

y∈C2

c(y, σ)
(

∑

x∈C1

c(x, σy)[f(σyx)− f(σy)]−
∑

x∈C1

c(x, σ)[f(σx)− f(σ)]
)

= L2L1f(σ) .

Lemma 5.8. Let C1 and C2 be such that Ci = Co
i ∪ C∂

i , where Co
i := {x ∈

Ci | dist (x, (Ci)
c) > L}, where Ac is the complement of set A. With further decompo-

sition Co
i = Coo

i +Co∂
i where Coo

i := {x ∈ Ci |dist (x, (Ci)
c) > 2L} (see Figure 3.1(b)).

Let Li = Lo
i +L∂

i and Lo
i = Loo

i +Lo∂
i , i = 1, 2 be the corresponding decomposition of

the generator L, then

[L1,L2] = [L∂
1 ,L

∂
2 ] , and [L1, [L1,L2]] = [[Lo∂

1 ,L∂
1 ],L

∂
2 ] + [L∂

1 , [L
∂
1 ,L

∂
2 ]] .
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Proof. The proof of the first statement follows directly from Lemma 5.7 by ob-
serving that dist (Co

1 , C
o
2 ) = 2L and dist (Co

1 , C
∂
2 ) = dist(C∂

1 , C
o
2 ) = L. For the second

statement, using the same lemma, we compute

[L1, [L1,L2]] = [Lo
1,L

∂
1L

∂
2 ]− [Lo

1,L
∂
2L

∂
1 ] + [L∂

1 , [L
∂
1 ,L

∂
2 ]] .

The first term on the right hand side can be further simplified [Lo
1,L

∂
1L

∂
2 ] = [Lo∂

1 ,L∂
1 ]L

∂
2 ,

where we used the fact that L∂
2L

o
1 = Lo

1L
∂
2 and [Loo

1 ,L∂
1 ] = 0. The same procedure

leads to simplifying the second term but the third cannot be simplified further. Com-
bining all these steps we obtain the result of the proposition.

The estimation of the commutator in Theorem 5.3 requires local estimates on the
first and second discrete derivatives of the solution to (2.5) by the discrete derivatives
of the initial data:

Lemma 5.9. The solution of the equation

∂tu = Lu , t ∈ (0, T ] , u(0, σ) = f(σ) , (5.11)

satisfies the bounds

max
x∈ΛN

‖δxu(t, · )‖∞ ≤ C max
x∈ΛN

‖δxu(0, · )‖∞ (5.12)

and

max
x,y∈ΛN

‖ δxyu(t, ·) ‖∞ ≤ C
[

max
x∈ΛN

‖δxu(0, · )‖∞ + max
x,y∈ΛN

‖ δxyu(0, ·) ‖∞
]

, (5.13)

where C is a constant independent of N , however, it may depend exponentially on t.
Proof. Using (5.7) and Lemma 5.5, we have

‖δxu(t, · )‖∞ ≤ ‖δxu(0, · )‖∞ +O(1)

∫ t

0

‖δxu(s, · )‖∞ ds

+O(
1

L
)

∫ t

0

∑

|x−y|≤L

‖δyu(s, · )‖∞ ds . (5.14)

Here the symbol O is asymptotic in the size of the system N → ∞. Setting γ(t) =
maxx∈ΛN

‖δxu(t, · )‖∞ we have

γ(t) ≤ γ(0) +O(1)

∫ t

0

γ(s)ds .

Applying Gronwall’s inequality we conclude the proof and obtain the bound γ(t) ≤
ectγ(0). The inequality (5.13) follows similarly from (5.9) and from Gronwall’s in-
equality.

The commutator, as shown in Lemma 5.8, is a localized quantity that depends
only on the boundary sites of the decomposed sub-lattices. Thus the localized estimate
in Lemma 5.9 gives us a tool in order to reveal the scaling of the commutator when
acting on macroscopic observables.

5.4. Proof of Theorem 5.3. By Lemma 5.8, the commutator can be written
as [L∂

1 ,L
∂
2 ], which due to Lemma 5.7 is expanded to

[L∂
1 ,L

∂
2 ]u(t, σ) =

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

c1(x, σ)c2(y, σ
x)δyu(σ

x, t)− c1(x, σ)c2(y, σ)δyu(σ, t)

− c1(x, σ
y)c2(y, σ)δxu(σ

x, t) + c1(x, σ)c2(y, σ)δxu(σ, t) .
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On the other hand, by a straightforward calculation, we have

L∂
1L

∂
2u(t, σ) =

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

c1(x, σ)c2(y, σ
x)δxyu(t, σ)

−
∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

c1(x, σ)δxc2(y, σ)δyu(t, σ) .

Taking norms on both sides similarly to Lemma 5.4 and using the fact that the rates
are bounded functions on ΛN × Σ,

‖[L1,L2]u(t, · )‖∞ ≤ C
∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

‖δxyu(t, · )‖∞ + ‖δyu(t, · )‖∞ ≤ C , (5.15)

where the second inequality follows from Proposition 5.6, using the fact that the
initial data are macroscopic observables, i.e., belong to C2(S). Similarly, we obtain
the commutator estimate for the Strang scheme.

Next, we turn our attention to (5.2). Many observables are in C2(S), but also
satisfy the local bound (5.1) as one can see in Section 5.1. Under this assumption, we
obtain from (5.15) the bound for the commutator

‖[L1,L2]u(t, · )‖∞ ≤ C
∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

‖δxyu(t, · )‖∞ + ‖δyu(t, · )‖∞

≤ C
[

max
x,y∈ΛN

‖δxyu(0, · )‖∞ + max
y∈ΛN

‖δyu(0, · )‖∞
]

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

1 , (5.16)

where the second inequality follows from Lemma 5.9. Using the fact that the initial
data belong to C2(S) and satisfy (5.1), as well as that |C∂

m| = c(d)Lqd−1, where d is
the dimension, we deduce that

‖[L1,L2]u(t, · )‖∞ ≤
C̃

N

∑

x∈Λ∂
1 ,y∈Λ∂

2

|x−y|≤L

1 ≤
C̃

N
×M × c(d)Lqd−1 × Ld = C

Ld+1

q
, (5.17)

where we used the fact that N
M = Q = qd. We note that for more general, non-square

lattices, the estimate is modified accordingly as the structure of neighbors in the
calculation of |C∂

m| will evidently change. Finally, the proof of (5.3) follows along the
same lines, noting that the the summation in (5.17) is now replaced by summations
such as

∑

x∈Λ∂
1 ,y∈Λ∂

2 ,z∈Λ∂
1

|x−y|≤L,|x−z|≤L

1 ≤ M × c(d)Lqd−1 × Ld × Ld .

6. Processor communication and error analysis. In this section we examine
the balance between accuracy and processor communication in the parallel Fractional
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Step KMC algorithms. Our analysis is based on the local and global error analysis
tools we have developed in this article.

A key feature of the fractional step methods is what we define as the Processor
Communication Schedule (PCS), which dictates the order with which the hierarchy
of operators in (3.3) are applied and for how long. For instance, for the Lie scheme
(3.4) the processors corresponding to L1 (resp. L2) do not communicate, hence the
processor communication within the algorithm occurs only each time we have to apply
e∆tL1 or e∆tL2 . For this reason, we characterize the FS-KMC algorithms (3.4), (3.5)
as partially asynchronous since there is no processor communication during the period
∆t. Furthermore, at every ∆t we have only local synchronization between processors,
i.e., between the sets C̄m ∩ C̄m′ when m ∈ I1 and m′ ∈ I2. Hence, the bigger the
allowable ∆t in (3.4) or in (3.5) the less processor communication we have, in which
case the error in the approximation (3.4) or (3.5) worsens.

In both schemes (3.4), and (3.5), the communication schedule is fully determin-
istic, relying on the Trotter Theorem. On the other hand, we can construct general
randomized PCS based on the Random Trotter Product Theorem, [13]. Indeed, the
sub-lattice parallelization algorithm for KMC, introduced in [23], is a particular ex-
ample of a fractional step algorithm with stochastic PCS. In [23, 20] each sub-lattice is
selected at random, independently and advanced by KMC over a fixed time window
∆t, subsequently a new random selection is made and again the sub-lattice is ad-
vanced by ∆t, etc. This algorithm is easily recast as a fractional step approximation,
[1].

Here we compare the deterministic and randomized PCS from the point of view
of processor communication and error analysis: we specify the same error tolerance
TOL for all PCS, which by means of our error analysis selects in each case a possibly
different time windows ∆t. Larger time windows ∆t give rise to algorithms that have
less processor communication for the same error tolerance.

6.1. Randomized processor communication schedules. A generalization
by Kurtz, [13], of the Trotter Theorem suggests numerically consistent schemes in
which evolutions are applied not in a deterministic, prescribed, order but as a ran-
dom composition of individual propagators resulting in a random evolution. Given a
pure jump process X(t), with stationary measure µ(dξ), and given the infinitesimal
generators Lk we define a random evolution by

Tn(t)f = eτ0/nLξ0 eτ1/nLξ1 . . . e
τN(nt)/nLξN(nt) f ,

where N(t) is the number of jumps up to time t and τk are the sojourn (waiting) times
at the visited states (ξ0, . . . , ξN(t)). The random Trotter product theorem yields the
expectation semigroup

lim
n→∞

Tn(t)f = etL̄f , a.s. (6.1)

with the generator L̄ characterized explicitly

L̄f =

∫

Lξf µ(dξ) . (6.2)

We present the construction in a simpler case of the independent identically dis-
tributed random variables that index the individual generators Lξ. We analyze the
randomized Lie scheme for the operator splitting given by L = L1 + L2. In the
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context of the parallel FS-KMC the random process X(t) can be interpreted as a
stochastic PCS. In [1] we demonstrated that the sub-lattice parallelization algorithm
for KMC, introduced in [23], is a particular example of a fractional step algorithm
with stochastic PCS. From the numerical analysis viewpoint, our re-interpretation of
the algorithm in [23] as (6.1) allows us to provide a rigorous justification that it is
a consistent estimator of the serial KMC algorithm. Next we present the local error
analysis of randomized PCS and in analogy to Lemma 4.2, we estimate the mean
(weak) local error of the approximating γ-process.

Definition 6.1 (Random Lie splitting). Let Pi(t), i = 1, 2, be two Markov
semigroups with the infinitesimal generators Li and the transition probability kernels
pi(t; γ, γ

′). Assume {ξ1, ξ2, . . . } be a sequence of i.i.d. Bernoulli random variables
with values ξ ∈ {1, 2}. We define the random evolution as the process {γkh}nk=0 by
setting for h > 0, k = 0, 1, 2, . . . , n, and ξ2k, ξ2k−1 independent of γ0, γh, . . . , γ(k−1)h

E[f(γkh) | γ(k−1)h] := Pξ2k−1
(h)Pξ2k (h)f(γ(2k−1)h) , (6.3)

where the transition probability kernel is

[Pξ1 (h)Pξ2(h)f ](η) =
∑

γ′

∑

γ′′

pξ1(h; η, γ
′)pξ2(h; γ

′, γ′′)f(γ′′) .

For a given f ∈ Cb(S) we estimate the quantity E
σ[f(σkh)] and E

γ [f(γkh)] where
the expected values are computed on the corresponding probability spaces associated
with each process and conditioned on the initial states σ0 = σ and γ0 = γ respectively.
We denote the initial states by different letters in order to distinguish between these
two different probability path measures, however, the initial state is assumed to be
same for both {σt}t≥0 and {γkh}nk=0.

Theorem 6.2 (Local Error). Assume P (ξk = 1) = P (ξk = 2) = 1
2 , for the

approximating process {γkh}nk=0 of Definition 6.1. Then for any f ∈ Cb(S) and given
∆t = h > 0, the exact process {σt}t≥0 with σ0 = γ0 = γ corresponding to the generator
1
2L satisfies

E
γ [f(γh)]− E

σ[f(σh)] = E
ξ [(Pξ1(h)Pξ2(h)f(γ)− u(γ, h))]

=
h2

2
E
ξ

[

L2
ξ1 + L2

ξ2 + 2Lξ1Lξ2 −
1

4
L2

]

f(γ) +O(h3) .

where u(γ, h) = P (h)f(γ) is the solution of the rescaled, by 1/2, equation (2.5)

∂tu(ζ, t) =
1

2
Lu(ζ, t) , u(ζ, 0) = f(ζ) . (6.4)

Proof. We estimate the local truncation error following similar steps as in the
deterministic case. From the definition of the γ-process we have

E
γ [f(γh)] = E

ξ[Pξ1(h)Pξ2 (h)f(γ)] ,

and similarly, using the fact that the initial states are same, σ0 = γ0 = γ,

E
σ[f(σh)] = P (h)f(γ) = u(γ, h) .

Hence we obtain a representation of the mean local error

E
γ [f(γh)]− E

σ[f(σh)] = E
ξ [(Pξ1(h)Pξ2(h)− P (h)) f(γ)] . (6.5)
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Now for given realizations of ξ1, ξ2 we have the expansion of Pξ1(h)Pξ2 (h)− P (h) as
in the deterministic case, thus obtaining

[Pξ1(h)Pξ2(h)− P (h)]f =

h[Lξ1 + Lξ2 −
1

2
L]f +

h2

2
[L2

ξ1 + L2
ξ2 + 2Lξ1Lξ2 −

1

4
L2]f +O(h3) .

(6.6)

Note that 1
2L = 1

2L1 +
1
2L2 is associated with the process {σt}t≥0. We have that the

leading term of the local truncation error is E
ξ[Lξ1 + Lξ2 − 1

2L] and thus this term
vanishes whenever 1

2L = E
ξ[Lξ1 + Lξ2 ], which holds true when P (ξk = 1) = P (ξk =

2) = 1
2 .

Remark 6.1. This calculation also shows that if we want to obtain the generator
L instead of 1

2L in Lemma 6.2, then in order to evolve the process σ by the time step
h, each semigroup Pξ1 , Pξ2 needs to be applied with the time step 2h, giving rise to
the approximating process γh. In this case we have the local error representation

E
γ [f(γh)]− E

σ[f(σh)] : = E
ξ [(Pξ1(2h)Pξ2(2h)f(γ)− u(γ, h))]

=
h2

2
E
ξ
[

4L2
ξ1 + 4L2

ξ2 + 8Lξ1Lξ2 − L2
]

f(γ) +O(h3) ,(6.7)

where u(γ, h) = P (h)f(γ) is the solution of (2.5).

6.2. Comparison of deterministic and random schedules. The presented
error analysis allows us to evaluate and compare deterministic (Lie and Strang) PCS
introduced in [1], as well as randomized PCS such as the one in Lemma 6.4, introduced
earlier in [23]. We compare the deterministic and randomized PCS from the point
of view of processor communication and error analysis by specifying the same error
tolerance TOL for all PCS which, by means of our error analysis, selects in each case
a possibly different time window ∆t. Larger time windows give rise to algorithms
that have less processor communication for the same error tolerance. We start with
the Lie and Strang schemes.

We fix the same error tolerance level TOL in the Lie and Strang global errors (4.5)
and (4.7) respectively. We also fix the same time window T = nL∆tL and T = nS∆S

where ∆tL and ∆tS are the respective time steps of the Lie and the Strang schemes
that will ensure the same tolerance level TOL up to time T . Based on Theorems 4.3
and 5.3 we have that the leading errors are governed by the commutators

TOL ∼ CLie(T )∆tLie , CLie(T ) = max
k=0,...,n

‖ [L1,L2]u(tk) ‖∞ , (6.8)

and

TOL ∼ CStrang(T )∆t2Strang , (6.9)

CStrang(T ) = max
k=0,...,n

‖
(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

u(tk) ‖∞ ,

where u = u(t) solves (2.5). Furthermore, due to (5.2) and (5.3) we have that

TOL ∼ O
(Ld+1

q

)

∆tLie , TOL ∼ O(
L2d+1

q

)

∆t2Strang . (6.10)

In the case of the randomized PCS the same reasoning as in Theorem 4.3 allows us
to iterate the mean local error (6.7) to obtain

TOL ∼ CRandom(T )∆tRandom ,

CRandom(T ) = max
k=0,...,n

E
ξ
[

4L2
ξ1 + 4L2

ξ2 + 8Lξ1Lξ2 − L2
]

u(tk) , (6.11)



22 G. Arampatzis, M. A. Katsoulakis, P. Plecháč

where u = u(t) solves (2.5). We now easily obtain that

E
ξ
[

4L2
ξ1 + 4L2

ξ2 + 8Lξ1Lξ2 − L2
]

u(t) =
[

4L2
1 + 4L2

2 + L2
]

u(t) .

Thus, due to the rigorous remainder bounds in Section 5 on the solution of (2.5) such
as Lemma 5.6, we have that the term ‖

[

4L2
1 + 4L2

2 + L2
]

u ‖∞ is of order O(1) in the
system size N , and we have

TOL ∼ O(1)∆tRandom . (6.12)

In order to achieve the same error tolerance TOL, (6.10) and (6.12) imply the
following relation between the respective time steps

δtSSA ≪ ∆tRandom ∼
Ld+1

q
∆tLie < ∆tLie ∼ Ld∆t2Strang < ∆tStrang . (6.13)

Here q is the diameter of each of the cells Ck in Figure 3.1(a), and δtSSA = O(1/N)
is the stochastic time step (the waiting time) of the SSA algorithm [5], which is
exponentially distributed according to (2.2).

The relation (6.13) has several practical implications: (i) The selection of the
time window ∆t in each PCS is intrinsically goal-oriented in the sense that it depends
directly on the macroscopic observable f(σ) through the commutator estimates of the
solution to (2.5); (ii) The random and deterministic PCS studied here are rigorously
partially asynchronous as their respective time windows are much larger than the SSA
time step δtSSA for a given error tolerance; (iii) The Lie scheme (3.4) is expected to
parallelize better than the randomized PCS in [23] when Ld+1 ≪ q, since it allows a
q-times larger time step ∆t for the same accuracy. This outcome is also demonstrated
in Figure 6.1. (iv) Finally, among the PCS we studied, the Strang PCS yields parallel
schemes with the least processor communication, at least when L ∼ O(1), due to its
higher order accuracy and the commutator estimate (5.3).

Example 6.1. We demonstrate this comparison in a computational example in
which a jump process defined by Arrhenius spin-flip dynamics on a one-dimensional
lattice was simulated. The simulated system corresponds to the Ising model with
nearest-neighbor interactions and spins taking values in {0, 1}. The rate of the process
is give by

c(x, σ) = cd(1− σ(x)) + caσ(x)e
−βU(x) ,

where U(x) = J(σ(x − 1) + σ(x + 1)) + h̄, and cd, ca, β, J , h are the parameters of
the model.

We verified the theoretical order of convergence by computing the error

∫ T

0

|E[C(t)] − E[C̃(t)]| dt

where C(t) and C̃(t) are the reference KMC and the FS-KMC solution, respectively,
obtained by averaging the spatial mean coverage process C(t) =

∑

x∈ΛN
σt(x) of

the system over K independent realizations. For the reference solution, the classical
stochastic simulation algorithm (SSA) was used. In order to eliminate the impact of
the statistical averaging error K = 105 independent samples were used. The error
bars are below resolution of the graph depicted in Figure 6.1. In Figure 6.1 the
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error behavior is compared for different values of the splitting time step h ≡ ∆t for
the randomized PCS and the Lie splitting. The lattice size is N = 800 and the
parameters of the system are β = 15, J = 0.37, h = 0.5 and ca = cd = 1. For the
fractional step algorithm four processors were used, thus the size of the sub-lattice is
q = 100. The final time is chosen to be T = 4.

0.1 0.5 1 2 4
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1e−3

2e−3
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2e−2

4e−2

8e−2

Slope  1.3
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E
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Random
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Fig. 6.1. Convergence of the weak error for deterministic and randomized Lie splitting.

Example 6.2. In this example we investigate the dependence of the weak error,
as defined in the previous example, on the sub-lattice parameter q. The model we used
to run the simulation is Ising model, as described in Example 6.1. The parameters
for the model are β = 5, J = 1, h = 0.5, and ca = cd = 1. The final time is
chosen to be T = 5 and the dimension of the lattice N = 480. For the FS-KMC
algorithm a constant, and rather large, time step parameter ∆t = 5 was used. For
the FS-KMC algorithm we used K = 104 samples to compute the mean value of the
solution on the interval [0, T ] and for the reference solution, which was obtained with
the SSA algorithm, K = 105 samples were used. In Figure 6.2 we can observe that the
deterministic schedules of Lie and Strang give better results than those of the random
PCS. Also the Strang scheme has lower error than the Lie scheme as expected from
the theoretical analysis. Finally, the dependence of the error on 1

q is also revealed,
which in logarithmic scale is shown as a straight line.

7. The infinite volume limit. In this paper we considered interacting particle
systems defined on a d-dimensional lattice ΛN , when the numerical analysis and sim-
ulations for the parallel fractional step Kinetic Monte Carlo are performed on a finite
lattice of size N . However, given the size of real molecular systems it is necessary that
numerical estimates are independent of the system size N as we showed in Section 5.
Alternatively we can consider the case N → ∞, e.g., by setting up our analysis on the
infinite lattice Λ = Z

d. We outline the latter approach here for completeness of our
analysis. We refer to [15] for a comprehensive study of interacting particle systems
set on infinite lattices.

First, we consider the configuration space S = ΣΛ, where Λ = Z
d and the space

of bounded continuous functions Cb(S). Then the generator (2.6) is defined on a
suitable domain D(L),

L : D(L) ⊂ Cb(S) 7→ Cb(S) .
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Fig. 6.2. Dependence of the weak error on the sub-lattice size parameter q, see also (6.13).

In this case, Theorem 4.3 is restated similarly to Theorem 3 in [8], provided the solu-
tion u = u(t) of (2.5) satisfies u(tk) ∈ D(Lm1

1 Lm2
2 ) for |m| ≤ 3 and k = 0, . . . , n. As

it was also pointed out in [8] this is in principle an uncheckable hypothesis. However,
this is not the case here: due to the results of Section 5 we have that if f ∈ C3(S) is
a macroscopic observable, where

Cm(S) := {f ∈ Cb(S) |
m
∑

k=1

‖f‖k < ∞} , ∀m ∈ N ,

then u(t) ∈ D(Lm1
1 Lm2

2 ) due to Theorem 5.3 and Remark 5.2. Therefore, all estimates
of Section 5 hold also true in the infinite lattice Λ, which is certainly not unexpected
since all previous results in ΛN were independent of the system size N .
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Appendix A. Proof of Lemma 4.2.

Proof. In order to simplify the notation, we introduce

ak,N (h) =











hk

k! L
k
1 if k < N ,

Dk(hL1) if k = N > 0 ,

ehL1 if k = N = 0 ,

bk,N (h) =











hk

k! L
k
2 if k < N ,

Dk(hL2) if k = N > 0 ,

ehL2 if k = N = 0 .

(A.1)

Now the semigroup for the Lie splitting, at t = h, can be written as

ehL1ehL2f =
∑

i+j≤3

ai,3−j(h)bj,3(h)f

=
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2
)

f

+ h2[L1,L2]f +
∑

i+j=3

ai,3−j(h)bj,3(h)f .

Comparing with

eh(L1+L2)f =
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2
)

f +D3(h(L1 + L2))f ,
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we get the estimate for the local error

‖ ehL1ehL2f − eh(L1+L2)f ‖∞ ≤ h2‖ [L1,L2]f ‖∞

+ ‖D3(h(L1 + L2))f ‖∞ + ‖
∑

i+j=3

ai,3−j(h)bj,3(h)f ‖∞ .

The second term in the above inequality is bounded by Lemma 4.1 and the third term
is bounded by

‖
∑

i+j=3

ai,3−j(h)bj,3(h)f ‖∞ ≤ ch3
(

‖L3
1f ‖∞+‖L2

1L2f ‖∞+‖L1L
2
2f ‖∞+‖L3

2f ‖∞
)

,

which follows from the definitions of ak and bk. The last step completes the proof for
the local error in the Lie case. For the Strang scheme the proof follows the same idea,
we only have to take one more term in the expansion,

e
h
2 L1ehL2e

h
2 L1f =

∑

i+j+k≤4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f

=
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2 +
h3

6
(L1 + L2)

3
)

f

+
h3
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(

[L1, [L1,L2]]− 2[L2, [L2,L1]]
)

f

+
∑

i+j+k=4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f .

Comparing with

eh(L1+L2)f =
(

I + h(L1 + L2) +
h2

2
(L1 + L2)

2

+
h3

6
(L1 + L2)

3
)

f +D4(h(L1 + L2))f ,

the estimate for the local error follows

‖ e
h
2 L1ehL2e

h
2 L1f − eh(L1+L2)f ‖∞ ≤ ch3‖ [L1, [L1,L2]]f − 2[L2, [L2,L1]]f ‖∞

+ ‖
∑

i+j+k=4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f ‖∞ + ‖D4(h(L1 + L2))f ‖∞ .

The second term is bounded by Lemma 4.1 and the third term is bounded by

‖
∑

i+j+k=4

ak,4−i−j(
h

2
)bj,4−i(h)ai,4(

h

2
)f ‖∞ ≤ c4h

4
∑

|m|=4

‖Lm1
1 Lm2

2 Lm3
1 f ‖∞ ,

which again follows from (A.1).


