4,204 research outputs found

    Toughness and hamiltonicity in kk-trees

    Get PDF
    We consider toughness conditions that guarantee the existence of a hamiltonian cycle in kk-trees, a subclass of the class of chordal graphs. By a result of Chen et al.\ 18-tough chordal graphs are hamiltonian, and by a result of Bauer et al.\ there exist nontraceable chordal graphs with toughness arbitrarily close to 74\frac{7}{4}. It is believed that the best possible value of the toughness guaranteeing hamiltonicity of chordal graphs is less than 18, but the proof of Chen et al.\ indicates that proving a better result could be very complicated. We show that every 1-tough 2-tree on at least three vertices is hamiltonian, a best possible result since 1-toughness is a necessary condition for hamiltonicity. We generalize the result to kk-trees for k≄2k\ge 2: Let GG be a kk-tree. If GG has toughness at least k+13,\frac{k+1}{3}, then GG is hamiltonian. Moreover, we present infinite classes of nonhamiltonian 1-tough kk-trees for each $k\ge 3

    The spectrum and toughness of regular graphs

    Full text link
    In 1995, Brouwer proved that the toughness of a connected kk-regular graph GG is at least k/λ−2k/\lambda-2, where λ\lambda is the maximum absolute value of the non-trivial eigenvalues of GG. Brouwer conjectured that one can improve this lower bound to k/λ−1k/\lambda-1 and that many graphs (especially graphs attaining equality in the Hoffman ratio bound for the independence number) have toughness equal to k/λk/\lambda. In this paper, we improve Brouwer's spectral bound when the toughness is small and we determine the exact value of the toughness for many strongly regular graphs attaining equality in the Hoffman ratio bound such as Lattice graphs, Triangular graphs, complements of Triangular graphs and complements of point-graphs of generalized quadrangles. For all these graphs with the exception of the Petersen graph, we confirm Brouwer's intuition by showing that the toughness equals k/(−λmin)k/(-\lambda_{min}), where λmin\lambda_{min} is the smallest eigenvalue of the adjacency matrix of the graph.Comment: 15 pages, 1 figure, accepted to Discrete Applied Mathematics, special issue dedicated to the "Applications of Graph Spectra in Computer Science" Conference, Centre de Recerca Matematica (CRM), Bellaterra, Barcelona, June 16-20, 201

    On the Computational Complexity of Vertex Integrity and Component Order Connectivity

    Full text link
    The Weighted Vertex Integrity (wVI) problem takes as input an nn-vertex graph GG, a weight function w:V(G)→Nw:V(G)\to\mathbb{N}, and an integer pp. The task is to decide if there exists a set X⊆V(G)X\subseteq V(G) such that the weight of XX plus the weight of a heaviest component of G−XG-X is at most pp. Among other results, we prove that: (1) wVI is NP-complete on co-comparability graphs, even if each vertex has weight 11; (2) wVI can be solved in O(pp+1n)O(p^{p+1}n) time; (3) wVI admits a kernel with at most p3p^3 vertices. Result (1) refutes a conjecture by Ray and Deogun and answers an open question by Ray et al. It also complements a result by Kratsch et al., stating that the unweighted version of the problem can be solved in polynomial time on co-comparability graphs of bounded dimension, provided that an intersection model of the input graph is given as part of the input. An instance of the Weighted Component Order Connectivity (wCOC) problem consists of an nn-vertex graph GG, a weight function w:V(G)→Nw:V(G)\to \mathbb{N}, and two integers kk and ll, and the task is to decide if there exists a set X⊆V(G)X\subseteq V(G) such that the weight of XX is at most kk and the weight of a heaviest component of G−XG-X is at most ll. In some sense, the wCOC problem can be seen as a refined version of the wVI problem. We prove, among other results, that: (4) wCOC can be solved in O(min⁡{k,l}⋅n3)O(\min\{k,l\}\cdot n^3) time on interval graphs, while the unweighted version can be solved in O(n2)O(n^2) time on this graph class; (5) wCOC is W[1]-hard on split graphs when parameterized by kk or by ll; (6) wCOC can be solved in 2O(klog⁡l)n2^{O(k\log l)} n time; (7) wCOC admits a kernel with at most kl(k+l)+kkl(k+l)+k vertices. We also show that result (6) is essentially tight by proving that wCOC cannot be solved in 2o(klog⁡l)nO(1)2^{o(k \log l)}n^{O(1)} time, unless the ETH fails.Comment: A preliminary version of this paper already appeared in the conference proceedings of ISAAC 201

    Conditions for minimally tough graphs

    Full text link
    Katona, Solt\'esz, and Varga showed that no induced subgraph can be excluded from the class of minimally tough graphs. In this paper, we consider the opposite question, namely which induced subgraphs, if any, must necessarily be present in each minimally tt-tough graph. Katona and Varga showed that for any rational number t∈(1/2,1]t \in (1/2,1], every minimally tt-tough graph contains a hole. We complement this result by showing that for any rational number t>1t>1, every minimally tt-tough graph must contain either a hole or an induced subgraph isomorphic to the kk-sun for some integer k≄3k \ge 3. We also show that for any rational number t>1/2t > 1/2, every minimally tt-tough graph must contain either an induced 44-cycle, an induced 55-cycle, or two independent edges as an induced subgraph

    Polyhedra with few 3-cuts are hamiltonian

    Get PDF
    In 1956, Tutte showed that every planar 4-connected graph is hamiltonian. In this article, we will generalize this result and prove that polyhedra with at most three 3-cuts are hamiltonian. In 2002 Jackson and Yu have shown this result for the subclass of triangulations. We also prove that polyhedra with at most four 3-cuts have a hamiltonian path. It is well known that for each k≄6k \ge 6 non-hamiltonian polyhedra with kk 3-cuts exist. We give computational results on lower bounds on the order of a possible non-hamiltonian polyhedron for the remaining open cases of polyhedra with four or five 3-cuts.Comment: 21 pages; changed titl
    • 

    corecore