219 research outputs found

    Maintenance Strategy Choice Supported by the Failure Rate Function: Application in a Serial Manufacturing Line

    Get PDF
    The purpose of this article is to choose a maintenance procedure for the critical equipment of a forging production line with five machines. The research method is quantitative modelling and simulation. The main research technique includes retrieving time between failure and time to repair data and find the most likely distribution that has produced the data. The most likely failure rate function helps to define the maintenance strategy. The study includes two kinds of maintenance policies, reactive and anticipatory. Reactive policies include emergency and corrective procedures. Anticipatory policies include predictive and preventive ones combined with a total productive maintenance management approach. The most suitable combination for the first three machines is emergency and corrective choice. For the other machines, a combination of total productive maintenance and a predictive approach is optimal. The study encompasses the case of a serial production manufacturing line and maximum likelihood estimation. The failure rate function defines a combination of strategies for each machine. In addition, the study calculates the individual and systemic mean time to failure, mean time to repair, availability, and the most likely number of failures per production order, which follows a Poisson process. The main contribution of the article is a structured method to help define maintenance choices for critical equipment based on empirical data

    Energy Efficiency

    Get PDF
    This book is one of the most comprehensive and up-to-date books written on Energy Efficiency. The readers will learn about different technologies for energy efficiency policies and programs to reduce the amount of energy. The book provides some studies and specific sets of policies and programs that are implemented in order to maximize the potential for energy efficiency improvement. It contains unique insights from scientists with academic and industrial expertise in the field of energy efficiency collected in this multi-disciplinary forum

    GIS and Remote Sensing for Renewable Energy Assessment and Maps

    Get PDF
    This book aims at providing the state-of-the-art on all of the aforementioned tools in different energy applications and at different scales, i.e., urban, regional, national, and even continental for renewable scenarios planning and policy making

    Impulse-based discrete element modelling of rock impact and fragmentation, with applications to block cave mining

    Get PDF
    Impulse-based methods efficiently and accurately model high-frequency collisions of complex shapes based on the enforcement of non-penetrating constraints. It does not rely on penalty parameters nor requires the computation of penetration between bodies. This work presents a novel necessary condition for energy conservation in impulse-based methods. In previous versions of the impulse methods, such as sequential and simultaneous impulse methods, the relative velocity at the contact points after collision is directly derived from the relative velocity before collision, in a purely simultaneous or sequential manner. This work presents a novel energy tracking method (ETM), in which the relative velocities are iteratively but gradually adjusted, simultaneously modelling their interaction at each iteration. ETM ensures the energy conservation while capturing the propagation of forces during collision. The ETM is applied to model the dynamics of fragment collision in the context of fragmentation. Two approaches of fragmentation are proposed: a finite-discrete element approach, and a low cost, fragmentation pattern-based approach. The first approach models the growth of fractures using the finite element method (FEM) and advanced re-meshing technology. This finite-discrete element approach suffers from the drawback of massive computational cost. The low-cost, fragmentation pattern-based approach separate colliding bodies directly. The fragmentation pattern is generated using Weibull distribution equations, the patterns and size distributions computed using full finite/discrete element simulations and experimental results. This work investigates the influence of fragmentation on the frequency of hang-up events and on the gravity flow of rock fragments within a block caving system. Numerical results indicate that models that do not consider fragmentation tend to overestimate the frequency of hang-up accidents.Open Acces

    Study of the Penetration of Photovoltaics into the Libyan Power System

    Get PDF
    The purpose of this study is to investigate the impacts of the penetration of Photovoltaic (PV) power generation on the Libyan power system with reference to voltage profile improvement and overall system performance. Integration of solar power generation with the Libyan electric power grid would provide a boost to the generation of clean electricity by harnessing renewable energy resources. Such an approach will reduce greenhouse gas GHG emissions by supplying zero-emission solar power to the grid and thereby mitigating overall CO2 emissions. The many advantages of integration of PV are lower fuel consumption and less reliance on traditional fuel sources, clean energy, less operation, and maintenance cost as compared to diesel generators and the possibility of exporting the saved fuel to enhance the economic health of Libya. This dissertation presents a brief description of the Libyan power system with its past, the current state of generation, transmission infrastructure and potential solar power plans. Further, this thesis has considered several solar energy scenarios for Libya, modeling of solar irradiation for a few locations considered in this study and the impact of solar PV generation on the voltage profile and overall performance of the Libyan electric power grid.Electrical Engineerin

    Wind generation forecasting methods and proliferation of artificial neural network:A review of five years research trend

    Get PDF
    To sustain a clean environment by reducing fossil fuels-based energies and increasing the integration of renewable-based energy sources, i.e., wind and solar power, have become the national policy for many countries. The increasing demand for renewable energy sources, such as wind, has created interest in the economic and technical issues related to the integration into the power grids. Having an intermittent nature and wind generation forecasting is a crucial aspect of ensuring the optimum grid control and design in power plants. Accurate forecasting provides essential information to empower grid operators and system designers in generating an optimal wind power plant, and to balance the power supply and demand. In this paper, we present an extensive review of wind forecasting methods and the artificial neural network (ANN) prolific in this regard. The instrument used to measure wind assimilation is analyzed and discussed, accurately, in studies that were published from May 1st, 2014 to May 1st, 2018. The results of the review demonstrate the increased application of ANN into wind power generation forecasting. Considering the component limitation of other systems, the trend of deploying the ANN and its hybrid systems are more attractive than other individual methods. The review further revealed that high forecasting accuracy could be achieved through proper handling and calibration of the wind-forecasting instrument and method

    Using probability density functions to analyze the effect of external threats on the reliability of a South African power grid

    Get PDF
    Includes bibliographical references.The implications of reliability based decisions are a vital component of the control and management of power systems. Network planners strive to achieve an optimum level of investments and reliability. Network operators on the other hand aim at mitigating the costs associated with low levels of reliability. Effective decision making requires the management of uncertainties in the process applied. Thus, the modelling of reliability inputs, methodology applied in assessing network reliability and the interpretation of the reliability outputs should be carefully considered in reliability analyses. This thesis applies probability density functions, as opposed to deterministic averages, to model component failures. The probabilistic models are derived from historical failure data that is usually confined to finite ranges. Thus, the Beta distribution which has the unique characteristic of being able to be rescaled to a different finite range is selected. The thesis presents a new reliability evaluation technique that is based on the sequential Monte Carlo simulation. The technique applies a time-dependent probabilistic modelling approach to network reliability parameters. The approach uses the Beta probability density functions to model stochastic network parameters while taking into account seasonal and time-of- day influences. While the modelling approach can be applied to different aspects such as intermittent power supply and system loading, it is applied in this thesis to model the failure and repair rates of network components. Unlike the conventional sequential Monte Carlo methods, the new technique does not require the derivation of an inverse translation function for the probability distribution applied. The conventional Monte Carlo technique simulates the up and down component states when building their chronological cycles. The new technique applied here focuses instead on simulating the down states of component chronological cycles. The simulation determines the number of down states, when they will occur and how long they will last before developing the chronological cycle. Tests performed on a published network show that focussing on the down states significantly improves the computation times of a sequential Monte Carlo simulation. Also, the reliability results of the new sequential Monte Carlo technique are more dependent on the input failure models than on the number of simulation runs or the stopping criterion applied to a simulation and in this respect gives results different from present standard approaches. The thesis also applies the new approach on a real bulk power network. The bulk network is part of the South African power grid. Thus, the network threats considered and the corresponding failure data collected are typical of the real South African conditions. The thesis shows that probability density functions are superior to deterministic average values when modelling reliability parameters. Probability density functions reflect the variability in reliability parameters through their dispersion and skewness. The time-dependent probabilistic approach is applied in both planning and operational reliability analyses. The component failure models developed show that variability in network parameters is different for planning and operational reliability analyses. The thesis shows how the modelling approach is used to translate long-term failure models into operational (short-term) failure models. DigSilent and MATLAB software packages are used to perform network stability and reliability simulations in this thesis. The reliability simulation results of the time-dependent probabilistic approach show that the perception on a network's reliability is significantly impacted on when probability distribution functions that account for the full range of parameter values are applied as inputs. The results also show that the application of the probabilistic models to network components must be considered in the context of either network planning or operation. Furthermore, the risk-based approach applied to the interpretation of reliability indices significantly influences the perception on the network's reliability performance. The risk-based approach allows the uncertainty allowed in a network planning or operation decision to be quantified

    Advances in Underground Energy Storage for Renewable Energy Sources

    Get PDF
    Energy storage currently plays an important role in the electricity systems. Innovative energy storage solutions will play an important role in ensuring the integration of renewable energy sources into the electrical grids in the European Union. Pumped storage hydropower systems are the most mature technology of energy storage and account for over 90% of installed energy storage capacity wordwide. However, PSH technology is constrained by topography and land availability in flat areas. In addition, PSH plants are controversial due to their impacts on landscape, land use and the environment. Conversely, underground energy storage systems may be an interesting alternative to increase the energy storage capacity with low envoronmental impacts.To help address and resolve these types of questions, this book is comprised of eleven chapters that explore new ways of energy stororage reducing the environmental impacts caused by the installation of conventional energy storage systems, as well as to increase the energy storage capacity and promote the use of disused underground space, such as abandoned mines and quiarries.The chapters included in this book cover a wide spectrum of issues related to underground energy storage systems. Advances in underground pumped storage hydropower, compressed air energy storage and hydrogen energy storage systems are presented. Finally, we would like to thank both the MDPI publishing and editorial staff for their excellent work and support, as well as the authors who collaborated with your interesting research works
    corecore