6,940 research outputs found

    Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics

    Full text link
    In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane external loads, but also inherits the geometrical and mechanical properties of the continuous Cosserat model, making it the natural soft robotics counterpart of the traditional rigid robotics dynamics model. The soundness of the model is demonstrated through extensive simulation and experimental results for both plane and out-of-plane motions.Comment: 13 pages, 9 figure

    Analysis and Experiments for Tendril-Type Robots

    Get PDF
    New models for the Tendril continuous backbone robot, and other similarly constructed robots, are introduced and expanded upon in this thesis. The ability of the application of geometric models to result in more precise control of the Tendril manipulator is evaluated on a Tendril prototype. We examine key issues underlying the design and operation of \u27soft\u27 robots featuring continuous body (\u27continuum\u27) elements. Inspiration from nature is used to develop new methods of operation for continuum robots. These new methods of operation are tested in experiments to evaluate their effectiveness and potential

    Static kinematics for an antagonistically actuated robot based on a beam-mechanics-based model

    Get PDF
    Soft robotic structures might play a major role in the 4th industrial revolution. Researchers have successfully demonstrated advantages of soft robotics over traditional robots made of rigid links and joints in several application areas including manufacturing, healthcare and surgical interventions. However, soft robots have limited ability to exert higher forces when it comes to interaction with the environment, hence, change their stiffness on demand over a wide range. One stiffness mechanism embodies tendon-driven and pneumatic air actuation in an antagonistic way achieving variable stiffness values. In this paper, we apply a beammechanics-based model to this type of soft stiffness controllable robot. This mathematical model takes into account the various stiffness levels of the soft robotic manipulator as well as interaction forces with the environment at the tip of the manipulator. The analytical model is implemented into a robotic actuation system made of motorised linear rails with load cells (obtaining applied forces to the tendons) and a pressure regulator. Here, we present and analyse the performance and limitations of our model

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Rate-independent soft crawlers

    Full text link
    This paper applies the theory of rate-independent systems to model the locomotion of bio-mimetic soft crawlers. We prove the well-posedness of the approach and illustrate how the various strategies adopted by crawlers to achieve locomotion, such as friction anisotropy, complex shape changes and control on the friction coefficients, can be effectively described in terms of stasis domains. Compared to other rate-independent systems, locomotion models do not present any Dirichlet boundary condition, so that all rigid translations are admissible displacements, resulting in a non-coercivity of the energy term. We prove that existence and uniqueness of solution are guaranteed under suitable assumptions on the dissipation potential. Such results are then extended to the case of time-dependent dissipation
    • …
    corecore