56 research outputs found

    Flux and field line conservation in 3--D nonideal MHD flows: Remarks about criteria for 3--D reconnection without magnetic neutral points

    Full text link
    We make some remarks on reconnection in plasmas and want to present some calculations related to the problem of finding velocity fields which conserve magnetic flux or at least magnetic field lines. Hereby we start from views and definitions of ideal and non-ideal flows on one hand, and of reconnective and non-reconnective plasma dynamics on the other hand. Our considerations give additional insights into the discussion on violations of the frozen--in field concept which started recently with the papers by Baranov & Fahr (2003a; 2003b). We find a correlation between the nonidealness which is given by a generalized form of the Ohm's law and a general transporting velocity, which is field line conserving.Comment: 9 pages, 2 figures, submitted to Solar Physic

    Fermat Principle in Finsler Spacetimes

    Full text link
    It is shown that, on a manifold with a Finsler metric of Lorentzian signature, the lightlike geodesics satisfy the following variational principle. Among all lightlike curves from a point (emission event) to a timelike curve (worldline of receiver), the lightlike geodesics make the arrival time stationary. Here ``arrival time'' refers to a parametrization of the timelike curve. This variational principle can be applied (i) to the vacuum light rays in an alternative spacetime theory, based on Finsler geometry, and (ii) to light rays in an anisotropic non-dispersive medium with a general-relativistic spacetime as background.Comment: 18 pages, submitted to Gen. Rel. Gra

    A sharp stability criterion for the Vlasov-Maxwell system

    Full text link
    We consider the linear stability problem for a 3D cylindrically symmetric equilibrium of the relativistic Vlasov-Maxwell system that describes a collisionless plasma. For an equilibrium whose distribution function decreases monotonically with the particle energy, we obtained a linear stability criterion in our previous paper. Here we prove that this criterion is sharp; that is, there would otherwise be an exponentially growing solution to the linearized system. Therefore for the class of symmetric Vlasov-Maxwell equilibria, we establish an energy principle for linear stability. We also treat the considerably simpler periodic 1.5D case. The new formulation introduced here is applicable as well to the nonrelativistic case, to other symmetries, and to general equilibria

    Spontaneous formation of flux concentrations in a stratified layer

    Full text link
    The negative effective magnetic pressure instability discovered recently in direct numerical simulations (DNS) may play a crucial role in the formation of sunspots and active regions in the Sun and stars. This instability is caused by a negative contribution of turbulence to the effective mean Lorentz force (the sum of turbulent and non-turbulent contributions) and results in formation of large-scale inhomogeneous magnetic structures from initial uniform magnetic field. Earlier investigations of this instability in DNS of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of large plasma beta are now extended into the regime of larger scale separation ratios where the number of turbulent eddies in the computational domain is about 30. Strong spontaneous formation of large-scale magnetic structures is seen even without performing any spatial averaging. These structures encompass many turbulent eddies. The characteristic time of the instability is comparable to the turbulent diffusion time, L^2/eta_t, where eta_t is the turbulent diffusivity and L is the scale of the domain. DNS are used to confirm that the effective magnetic pressure does indeed become negative for magnetic field strengths below the equipartition field. The dependence of the effective magnetic pressure on the field strength is characterized by fit parameters that seem to show convergence for larger values of the magnetic Reynolds number.Comment: 14 pages, 8 figures, submitted to special issue "Advances of European Solar Physics" in Solar Physic

    Compressibility Effect on the Rayleigh–Taylor Instability with Sheared Magnetic Fields

    Get PDF
    We study the effect of plasma compressibility on the Rayleigh–Taylor instability of a magnetic interface with a sheared magnetic field. We assume that the plasma is ideal and the equilibrium quantities are constant above and below the interface. We derive the dispersion equation. Written in dimensionless variables, it contains seven dimensionless parameters: the ratio of plasma densities above and below the interface ζζ, the ratio of magnetic field magnitude squared χχ, the shear angle αα, the plasma beta above and below the interface, β2β2 and β1β1, the angle between the perturbation wave number and the magnetic field direction above the interface ϕϕ, and the dimensionless wave number κκ. Only six of these parameters are independent because χχ, β1β1, and β2β2 are related by the condition of total pressure continuity at the interface. Only perturbations with the wave number smaller than the critical wave number are unstable. The critical wave number depends on ϕϕ, but it is independent of β1β1 and β2β2, and is the same as that in the incompressible plasma approximation. The dispersion equation is solved numerically with ζ=100ζ=100, χ=1χ=1, and β1=β2=ββ1=β2=β. We obtain the following results. When ββ decreases, so does the maximum instability increment. However, the effect is very moderate. It is more pronounced for high values of αα. We also calculate the dependence on ϕϕ of the maximum instability increment with respect to κκ. The instability increment takes its maximum at ϕ=ϕmϕ=ϕm. Again, the decrease of ββ results in the reduction of the instability increment. This reduction is more pronounced for high values of |ϕ−ϕm||ϕ−ϕm|. When both αα and |ϕ−ϕm||ϕ−ϕm| are small, the reduction effect is practically negligible. The theoretical results are applied to the magnetic Rayleigh–Taylor instability of prominence threads in the solar atmosphere

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight

    Stability of a toroidal pinch

    No full text
    corecore