9,699 research outputs found

    Preface and Thank You, Arthur!

    Full text link

    Time Dependence of Particle Creation from Accelerating Mirrors

    Get PDF
    Particle production due to a quantized, massless, minimally coupled scalar field in two-dimensional flat spacetime with an accelerating mirror is investigated, with a focus on the time dependence of the process. We analyze first the classes of trajectories previously investigated by Carlitz and Willey and by Walker and Davies. We then analyze four new classes of trajectories, all of which can be expressed analytically and for which several ancillary properties can be derived analytically. The time dependence is investigated through the use of wave packets for the modes of the quantized field that are in the out vacuum state. It is shown for most of the trajectories studied that good time resolution of the particle production process can be obtained.Comment: 21 pages, 5 figure

    Black Hole - Moving Mirror II: Particle Creation

    Get PDF
    There is an exact correspondence between the simplest solution to Einstein's equations describing the formation of a black hole and a particular moving mirror trajectory. In both cases the Bogolubov coefficients in 1+1 dimensions are identical and can be computed analytically. Particle creation is investigated by using wave packets. The entire particle creation history is computed, incorporating the early-time non-thermal emission due to the formation of the black hole (or the early-time acceleration of the moving mirror) and the evolution to a Planckian spectrum.Comment: Contribution to MG14 Proceedings, 5 pages, 4 figure

    Mirror Reflections of a Black Hole

    Get PDF
    An exact correspondence between a black hole and an accelerating mirror is demonstrated. It is shown that for a massless minimally coupled scalar field the same Bogolubov coefficients connecting the "in" and "out" states occur for a (1+1)D flat spacetime with a particular perfectly reflecting accelerating boundary trajectory and a (1+1)D curved spacetime in which a null shell collapses to form a black hole. Generalization of the latter to the (3+1)D case is discussed. The spectral dynamics is computed in both (1+1)-dimensional spacetimes along with the energy flux in the spacetime with a mirror. It is shown that the approach to equilibrium is monotonic, asymmetric in terms of the rate, and there is a specific time which characterizes the system when it is the most out-of-equilibrium.Comment: 25 pages, 7 figure

    Low frequency gray-body factors and infrared divergences: rigorous results

    Full text link
    Formal solutions to the mode equations for both spherically symmetric black holes and Bose-Einstein condensate acoustic black holes are obtained by writing the spatial part of the mode equation as a linear Volterra integral equation of the second kind. The solutions work for a massless minimally coupled scalar field in the s-wave or zero angular momentum sector for a spherically symmetric black hole and in the longitudinal sector of a 1D Bose-Einstein condensate acoustic black hole. These solutions are used to obtain in a rigorous way analytic expressions for the scattering coefficients and gray-body factors in the zero frequency limit. They are also used to study the infrared behaviors of the symmetric two-point function and two functions derived from it: the point-split stress-energy tensor for the massless minimally coupled scalar field in Schwarzschild-de Sitter spacetime and the density-density correlation function for a Bose-Einstein condensate acoustic black hole.Comment: 41 pages, 5 figure

    Scattering coefficients and gray-body factor for 1D BEC acoustic black holes: exact results

    Full text link
    A complete set of exact analytic solutions to the mode equation is found in the region exterior to the acoustic horizon for a class of 1D Bose-Einstein condensate (BEC) acoustic black holes. From these, analytic expressions for the scattering coefficients and gray-body factor are obtained. The results are used to verify previous predictions regarding the behaviors of the scattering coefficients and gray-body factor in the low frequency limit.Comment: 13 pages, 1 figure, Final version, to appear in Phys. Rev.
    corecore