Carbonation mechanism of different kind of C-S-H : rate and products

Abstract

During the carbonation of cement paste blended with supplementary cementitious materials, the C-S-H with different Ca/Si ratios, formed from the hydration and pozzolanic reactions, are the major calcium-bearing phases which react with CO2. Therefore, it’s important to study the carbonation mechanism of different C-S-H phases. In this paper, the pure C-S-H phases (Ca/Si ratio: 0.66 to 2.0) were synthesized and used for the accelerated carbonation test. Synthesized C-S-H phases with different Ca/Si ratio were identified by X-ray diffraction and 29Si nuclear magnetic resonance. The carbonation rate and products of different C-S-H phases are also determined. The results show that pure C-S-H phases with different Ca/Si ratio (lower than 1.40) can be synthesized in the lab. The structure of synthesized C-S-H is similar to the C-S-H(I) reported by Taylor. The mean chain length of the C-S-H decreases dramatically when the Ca/Si ratio increases from 0.66 to 1.40, then it keeps no change. The portlandite appears in the products when the designed Ca/Si ratio is over 1.40. The C-S-H with lower Ca/Si ratio is decomposed faster than that with a higher Ca/Si ratio. All the C-S-H phases are fully decomposed to CaCO3 and silica gel after 3 days’ accelerated carbonation

Similar works

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess