journal articleresearch articletext

Advancing an already high-performance smart building with model predictive control: Multi-layer optimization under forecast uncertainty in a real building case

Abstract

Thermal energy systems in buildings play a central role in global decarbonization efforts, accounting for a significant share of energy use and carbon emissions. This study addresses a key research question: how can advanced control strategies further enhance the performance of already energy-efficient, low-exergy thermal systems in low-energy buildings? To address this, a model predictive control (MPC) framework is designed to optimize the operation of an advanced thermal system based on modern concepts of low-temperature heating and high-temperature cooling, including ground-source heat pumps, borehole thermal storage, and modern air handling units. This approach employs a multi-layered MPC cost function, considering both immediate operational costs (electricity and heating) as well as system impact penalties, such as CO₂ emissions, thermal energy storage preservation, comfort violations, and peak load shaving, in response to fluctuating market cost signals, outdoor temperature, and thermal storage limitations. Applied to a validated, ultra-efficient commercial building, the MPC framework achieves a 13 % reduction in annual market-responsive operational costs, a 20 % improvement in long-term savings, and a four-year shorter payback period compared to existing well-established rule-based control. The results further confirm the robustness of predictive control under realistic forecast errors, as demonstrated by Monte Carlo simulations. From an environmental perspective, the CO₂ emission index stays below both Swedish electricity and district heating baselines, demonstrating the environmental benefits of predictive control through strategic sector coupling. Beyond the case study, the proposed method provides a scalable pathway for integrating predictive control into next-generation smart buildings. It highlights the potential of MPC as the final optimization layer in advanced thermal systems, aligning with global objectives for cost-promising and carbon-neutral building operations. QC 20250806</p

Similar works

Full text

thumbnail-image

Publikationer från KTH

redirect
Last time updated on 06/01/2026

This paper was published in Publikationer från KTH.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess