The ongoing German energy transition will require offshore wind turbines with outputs of >10 MW in the future. Turbines with these high outputs must be located far from the coast, with up to 50 m large subsea jacket structures and tall towers. These structures are increasingly fabricated of high-strength steels with a yield strength up to 500 MPa and wall thicknesses of up to 120 mm. During production, weld defects identified through non-destructive testing (NDT) must be locally repaired by gouging and rewelding. Standards and guidelines lack sufficient concepts and information regarding such repair procedures. To address this gap, BAM launched the FOSTA project P1629 (IGF 01IF22746N) to explore stress-optimised repair concepts, specifically local gouging and welding, for high-strength thick plate joints made from offshore-grade steels with yield strengths between 355 MPa and 460 MPa, including matching weld metals. This research aims to develop a stress-optimised repair concept for thick plate joints, utilising controlled high-performance GMAW techniques and narrow gouging grooves. Both thermal and mechanical gouging methods are applied, enabling adjustments to the groove geometry. Modern welding processes offer deep root penetration and concentrated energy input, making them suitable for narrow seams. The intended reduction in residual stress results from the decreased weld metal volume, due to modified groove shapes and the lower heat input per layer achieved through controlled arc processes. Experimental investigations examine how process parameters, material properties, and design factors interact to influence the development of welding-induced stresses. The project concludes with practical recommendations for guidelines tailored to steel-processing SMEs
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.