SPECT Sol Ventrikül Bölütlenmesi Kullanılarak Makine Öğrenmesi Yöntemleri ile Kalbin Uzun Ekseni Çıkarım

Abstract

Isik UniversitySegmentation of myocardial tissue in SPECT (Single Photon Emission Computed Tomography) left ventricle images is a crucial problem for assisting diagnosis. Non-AI-based segmentation models in this field typically segment by first extracting key points such as the apex and base of the heart, as well as lines like the long axis, based on predefined assumptions. However, these models perform poorly in cases where SPECT images are noisy. In contrast, AI-based models, which are more robust to noise, can perform segmentation without requiring any predefined points or axes. In clinical practice, segmented heart images are examined by experts using short-axis, vertical long-axis, and horizontal long-axis views. Therefore, determining the long axis of the left ventricle is of critical importance. As a novel contribution to the literature, this study aims to extract the long axis from binary segmentation images in AI-supported SPECT left ventricle segmentation models - a missing aspect in current approaches. The deep learning model we developed determines the symmetry axis in given 3D binary segmentation images and extracts clinically important cross-sections from long and short axes for diagnostic evaluation. © 2025 Elsevier B.V., All rights reserved

Similar works

Full text

thumbnail-image

TOBB ETU GCRIS Database

redirect
Last time updated on 20/11/2025

This paper was published in TOBB ETU GCRIS Database.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.