AntiCheatPT: A Transformer-Based Approach to Cheat Detection in Competitive Computer Games

Abstract

Cheating in online video games compromises the integrity of gaming experiences. Anti-cheat systems, such as VAC (Valve Anti-Cheat), face significant challenges in keeping pace with evolving cheating methods without imposing invasive measures on users' systems. This paper presents AntiCheatPT_256, a transformer-based machine learning model designed to detect cheating behaviour in Counter-Strike 2 using gameplay data. To support this, we introduce and publicly release CS2CD: A labelled dataset of 795 matches. Using this dataset, 90,707 context windows were created and subsequently augmented to address class imbalance. The transformer model, trained on these windows, achieved an accuracy of 89.17% and an AUC of 93.36% on an unaugmented test set. This approach emphasizes reproducibility and real-world applicability, offering a robust baseline for future research in data-driven cheat detection

Similar works

Full text

thumbnail-image

The IT University of Copenhagen's Repository

redirect
Last time updated on 08/11/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess