An interpretable neural network approach to cause-of-death mortality forecasting

Abstract

Cause-of-death mortality forecasting, a key topic in public health and actuarial science, is a challenging task due to the difficulty of modeling that accounts for dependencies among causes of death. While several cause-of-death mortality models have been proposed to address this difficulty, little attention has been paid to improving their predictive performance. Recently, purely data-driven approaches using tensor decomposition methods have been introduced to cause-of-death mortality modeling, demonstrating strong out-of-sample predictive performance compared to existing models. However, these methods have difficulties in the interpretability of multi-rank tensor components to achieve strong predictive performance.In response, we propose a novel tensor-based cause-of-death mortality model by replacing the tensor decomposition with a convolutional autoencoder with a one-dimensional latent layer that provides a Lee-Carter-like time-series factor; the model also provides the age sensitivity of cause-specific log mortality to the time-series factor. Due to the representational capability of the neural network, our model achieves better predictive performance compared to the existing tensor decomposition-based models, despite the simplified latent layer for model interpretability.journal articl

Similar works

This paper was published in Meiji Repository (Meiji University).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: open access