A BRET-based Mpro biosensor containing a nanobody and tandem cleavage sites shows an increased cleavage rate

Abstract

Here, we report the engineering of a Bioluminescence Resonance Energy Transfer (BRET)-based SARS-CoV-2 main protease (Mpro) biosensor containing the Mpro N-terminal autocleavage sequence in tandem and a nanobody that shows an enhanced rate of Mpro-mediated proteolytic cleavage. Specifically, we designed Mpro biosensors containing 2×, 4× and 8× repeats of Mpro N-terminal autocleavage sequences and a combination of Mpro cleavage sequences containing a total of 12 cleavage sites sandwiched between mNeonGreen (mNG) and NanoLuc (NLuc). Gaussian accelerated molecular dynamics (GaMD) simulations of the predicted alpha-helical synthetic Mpro cleavage sequences revealed a dynamic nature of the cleavage sequences, which is critical for their efficient cleavage, and a relatively short end-to-end distances, which is required for high BRET. Live cell assays revealed a cleavage sequence length-dependent resonance energy transfer, except for the 12× -syn cleavage site, and an increased rate of cleavage and a decreased pharmacological inhibitor efficacy for the Mpro biosensor containing 2× cleavage sequences. Further, mutational analysis revealed a requirement for both cleavage sites to be intact for increased cleavage rate. Importantly, the inclusion of an Mpro-binding, but non-inhibiting, NB2E3 nanobody at the N-terminal further increased the cleavage rate of the 2× cleavage sequence-containing Mpro biosensor. We envisage that the NB2E3 nanobody-2× Mpro biosensor engineered here will be useful in drug discovery and functional characterization of Mpro mutants in newly emerging SARS-CoV-2 variants as well as in detecting SARS-CoV-2 infection in a point-of-care testing (POCT) format.This work is supported by the Undergraduate Research Experience Program (UREP) grant (# 28–264–3–092) awarded by the Qatar National Research Foundation (QNRF), Qatar Foundation and an internal funding from the College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), a member of the Qatar Foundation. Some of the computational research work reported in the manuscript were performed using high-performance computer resources and services provided by the Research Computing group in Texas A&M University at Qatar. Research Computing is funded by the Qatar Foundation for Education, Science and Community Development (http://www.qf.org.qa). A.M.G. was supported by a postdoctoral fellowship from CHLS/HBKU. A.S., A.F., and S.M.N.U. were supported by scholarships from CHLS/HBKU

Similar works

This paper was published in Qatar University Institutional Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by/4.0/