research article text

Submodular Hypergraph Partitioning: Metric Relaxations and Fast Algorithms via an Improved Cut-Matching Game

Abstract

Despite there being significant work on developing spectral- [Chan et al., 2018; Lau et al., 2023; Kwok et al., 2022], and metric-embedding-based [Louis and Makarychev, 2016] approximation algorithms for hypergraph conductance, little is known regarding the approximability of other hypergraph partitioning objectives. This work proposes algorithms for a general model of hypergraph partitioning that unifies both undirected and directed versions of many well-studied partitioning objectives. The first contribution of this paper introduces polymatroidal cut functions, a large class of cut functions amenable to approximation algorithms via metric embeddings and routing multicommodity flows. We demonstrate a simple O(√{log n})-approximation, where n is the number of vertices in the hypergraph, for these problems by rounding relaxations to metrics of negative-type. The second contribution of this paper generalizes the cut-matching game framework of Khandekar et al. [Khandekar et al., 2007] to tackle polymatroidal cut functions. This yields an almost-linear time O(log n)-approximation algorithm for standard versions of undirected and directed hypergraph partitioning [Kwok et al., 2022]. A technical contribution of our construction is a novel cut-matching game, which greatly relaxes the set of allowed actions by the cut player and allows for the use of approximate s-t maximum flows by the matching player. We believe this to be of independent interest

Similar works

Full text

thumbnail-image

DROPS Dagstuhl Research Online Publication Server

redirect
Last time updated on 27/07/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by/4.0/legalcode