research articlejournal article

Identification of new PFAS for severe interference with thyroid hormone transport: A combined in vitro/silico approach

Abstract

International audienceA tiered in vitro/in silico approach was developed to screen 12,654 per- and polyfluoroalkyl substances (PFAS) for their potential to disrupt the thyroid hormone transport. Initially, a set of 45 PFAS was tested using TTR-TRβ-CALUX bioassay, which was subsequently employed to develop a classification model, distinguishing active and inactive PFAS. The model fulfills all good practices for QSAR model validation and can predict whether a given PFAS can disrupt plasma transport of the thyroid hormone (T4). Subsequently, active compounds were used to develop two regression approaches: (i) multiple linear regression MLR, and (ii) second approach aimed at identifying multiple valid QSAR models based on different data-splitting strategies. Finally, a comprehensive virtual screening of a large PFAS dataset was conducted to assess their potency in disrupting thyroid hormone transport. The predictions indicated that more than 7500 compounds were active with over 100 PFAS potentially causing even greater adverse effects than PFOA. These findings highlight the critical role of integrating New Approach Methodologies (NAM)-based in vitro toxicity testing with multifaceted molecular modeling in assessing the risks associated with PFAS contamination in environmental matrices

Similar works

Full text

thumbnail-image

HAL-INERIS

redirect
Last time updated on 12/07/2025

This paper was published in HAL-INERIS.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/OpenAccess