A Systematic Review of Effective Data Augmentation in Cervical Cancer Detection

Abstract

The rapid progress of AI has made computer-assisted systems essential in medical fields like cervical cytology analysis. Deep learning requires large datasets, but data scarcity and privacy concerns pose challenges. Data augmentation addresses this by generating additional images and improving model accuracy and generalizability. This review examines effective augmentation techniques and top-performing deep-learning models for segmentation and classification in cervical cancer detection. Analyzing 57 articles, we found that hybrid deep feature fusion with augmentation (rotation, flipping, shifting, brightness adjustments) achieved 99.8% accuracy in binary and 99.1% in multiclass classification. Augmentation is vital for enhancing model performance in limited data scenarios

Similar works

Full text

thumbnail-image

International Journal of Electronics and Telecommunications (Warsaw University of Technology)

redirect
Last time updated on 22/06/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: https://creativecommons.org/licenses/by-nc/4.0