The consensus algorithm is the core technology of blockchain systems to maintain data consistency, and its performance directly affects the efficiency and security of the whole system. Practical Byzantine Fault Tolerance (PBFT) plays a crucial role in blockchain consensus algorithms by providing a robust mechanism to achieve fault-tolerant and deterministic consensus in distributed networks. With the development of 5G network technology, its features of high bandwidth, low latency, and high reliability provide a new approach for consensus algorithm optimization. To take advantage of the features of the 5G network, this paper proposes 5G-PBFT, which is an improved practical Byzantine fault-tolerant consensus algorithm with three ways to improve PBFT. Firstly, 5G-PBFT constructed the reputation model based on node performance and behavior. The model dynamically selected consensus nodes based on the reputation value to ensure the reliability of the consensus node selection. Next, the algorithm selected the primary node using the reputation model and verifiable random function, giving consideration to the reliability of the primary node and the randomness of the selection process. Finally, we take advantage of the low latency feature of the 5G network to omit the submission stage to reduce the communication complexity from ON² to ON, where N denotes the number of nodes. The simulation results show that 5G-PBFT achieves a 26% increase in throughput and a 63.6% reduction in transaction latency compared to the PBFT, demonstrating significant performance improvements
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.