Steady compressible 3D Euler flows in toroidal volumes without continuous Euclidean isometries

Abstract

We demonstrate the existence of smooth three-dimensional vector fields where the cross product between the vector field and its curl is balanced by the gradient of a smooth function, with toroidal level sets that are not invariant under continuous Euclidean isometries. This finding indicates the existence of steady compressible Euler flows, either influenced by an external potential energy or maintained by a density source in the continuity equation, that are foliated by asymmetric nested toroidal surfaces. Our analysis suggests that the primary obstacle in resolving Grad’s conjecture regarding the existence of nontrivial magnetohydrodynamic equilibria arises from the incompressibility constraint imposed on the magnetic field.journal articl

Similar works

Full text

thumbnail-image

NIFS-Repository (National Institute for Fusion Science)

redirect
Last time updated on 12/06/2025

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.