Origin of the rich polymorphism of gold in penta-twinned nanoparticles

Abstract

We report on the crystallographic structure of penta-twinned gold nanoparticles. Although gold typically exhibits a face-centered cubic (fcc) lattice, other phases have been reported in some nanoscale systems. We show that the crystallographic system and the lattice parameters of the gold unit cell strongly depend on the nanoparticle geometry, for a wide size range. Specifically, we show that decahedra exhibit a body-centered tetragonal structure (I4/mmm), whereas rods and bipyramids exhibit a body-centered orthorhombic structure (Immm). These changes in the crystallographic structure are explained by the elastic lattice distortions required to close the mismatch gap in penta-twinned nanoparticles, with respect to fcc single-crystal gold nanoparticles. The effects of nanoparticle shape and size on the surface pressure and the subsequent distortions are additionally discussed

Similar works

This paper was published in UCrea.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: openAccess