AI-assisted in silico trial for the optimization of osmotherapy after ischaemic stroke

Abstract

Over the past few decades, osmotherapy has commonly been employed to reduce intracranial pressure in post-stroke oedema. However, evaluating the effectiveness of osmotherapy has been challenging due to the difficulties in clinical intracranial pressure measurement. As a result, there are no established guidelines regarding the selection of administration protocol parameters. Considering that the infusion of osmotic agents can also give rise to various side effects, the effectiveness of osmotherapy has remained a subject of debate. In previous studies, we proposed the first mathematical model for the investigation of osmotherapy and validated the model with clinical intracranial pressure data. The physiological parameters vary among patients and such variations can result in the failure of osmotherapy. Here, we propose an AI-assisted in silico trial for further investigation of the optimisation of administration protocols. The proposed deep neural network predicts intracranial pressure evolution over osmotherapy episodes. The effects of the parameters and the choice of dose of osmotic agents are investigated using the model. In addition, clinical stratifications of patients are related to a brain model for the first time for the optimisation of treatment of different patient groups. This provides an alternative approach to tackle clinical challenges with in silico trials supported by both mathematical/physical laws and patient-specific biomedical information.Stephen J. Payne is supported by a Yushan Fellowship from the Ministry of Education, Taiwan (111V1004-2). David A. Clifton is supported by the Pandemic Sciences Institute at the University of Oxford; the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC); an NIHR Research Professorship; a Royal Academy of Engineering Research Chair; and the InnoHK Hong Kong Centre for Centre for Cerebro-cardiovascular Engineering (COCHE).IEEE Journal of Biomedical and Health Informatic

Similar works

This paper was published in CERES Research Repository (Cranfield Univ.).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by/4.0/