A Single Cluster of Coregulated Genes Encodes the Biosynthesis of the Mycotoxins Roquefortine C and Meleagrin in Penicillium chrysogenum

Abstract

[EN] A single gene cluster of Penicillium chrysogenum contains genes involved in the biosynthesis and secretion of the mycotoxins roquefortine C and meleagrin. Five of these genes have been silenced by RNAi. Pc21g15480 (rds) encodes a nonribosomal cyclodipeptide synthetase for the biosynthesis of both roquefortine C and meleagrin. Pc21g15430 (rpt) encodes a prenyltransferase also required for the biosynthesis of both mycotoxins. Silencing of Pc21g15460 or Pc21g15470 led to a decrease in roquefortine C and meleagrin, whereas silencing of the methyltransferase gene (Pc21g15440; gmt) resulted in accumulation of glandicolin B, indicating that this enzyme catalyzes the conversion of glandicolin B to meleagrin. All these genes are transcriptionally coregulated. Our results prove that roquefortine C and meleagrin derive from a single pathway.SIEuropean UnionMinistry of Science and Innovatio

Similar works

This paper was published in Leon University (Spain).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess