Bioinformatics pipeline for processing single-cell data

Abstract

Single-cell proteomics can offer valuable insights into dynamic cellular interactions, but identifying proteins at this level is challenging due to their low abundance. In this chapter, we present a state-of-the-art bioinformatics pipeline for single-cell proteomics that combines the search engine Sage (via SearchGUI), identification rescoring with MS2Rescore, quantification through FlashLFQ, and differential expression analysis using MSqRob2. MS2Rescore leverages LC-MS/MS behavior predictors, such as MS2PIP and DeepLC, to recalibrate scores with Percolator or mokapot. Combining these tools into a unified pipeline, this approach improves the detection of low-abundance peptides, resulting in increased identifications while maintaining stringent FDR thresholds

Similar works

Full text

thumbnail-image

Ghent University Academic Bibliography

redirect
Last time updated on 08/02/2025

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.