SUBA-Jet: a new Model for Jets in Heavy Ion Collisions

Abstract

International audienceWe present a new model for jet quenching in a quark gluon plasma (QGP). The jet energy loss has two steps. The initial jet parton with a high virtuality loses energy by a perturbative vacuum parton shower modified by medium interactions until it becomes on shell. Subsequent energy loss originates from elastic and radiative collisions with the medium constituents. Coherency of the radiative collisions is achieved by starting with virtual gluons that act as field dressing of the initial jet parton. These are formed according to a Gunion-Bertsch seed. The QCD version of the LPM effect is obtained by increasing the phase of the virtual gluons through elastic scatterings with the medium. Above a phase threshold, the virtual gluons will be formed and can produce coherent radiation themselves. The model has been implemented in a Monte Carlo code and is validated by successfully reproducing the BDMPS-Z prediction for the energy spectrum of radiated gluons in a static medium. Results for the more realistic case, in which the assumptions of the BDMPS-Z approach are released, are also shown. We investigate the influence of various parameters on the energy spectrum and the transverse momentum distribution, such as the in-medium quark masses, the energy transfer in the recoil process, and the phase accumulation criteria, especially for low and intermediate energy gluons

Similar works

Full text

thumbnail-image

HAL Mines Nantes

redirect
Last time updated on 19/05/2024

This paper was published in HAL Mines Nantes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.