Data-driven shared decision-making: a paradigm shift

Abstract

At first sight, shared decision-making and data science seem like two vastly different fields. Yet, despite their differences, both fields could, if combined, reinforce clinical utility for both. Here we describe a new paradigm called data-driven shared decision-making (dSDM), an extension of the existing shared decision-making paradigm. In dSDM, data’s role and its interaction with the patient and doctor are made explicit. Furthermore, we describe the opportunities and challenges of combining data science and shared decision-making into this new paradigm. We believe that dSDM will bridge the gap between the need for patient empowerment and the need for more personalized medicine

Similar works

Full text

thumbnail-image

Journal of Radiation Oncology Informatics

redirect
Last time updated on 12/12/2021

This paper was published in Journal of Radiation Oncology Informatics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: http://creativecommons.org/licenses/by/4.0