Numerical validation of an improved model for the shearing and transverse crushingof orthotropic composites

Abstract

This paper details a complete crush model for composite materials with focus on shear dominated crushing under a3D stress state. The damage evolution laws and nal failure strain conditions are based on data extracted from shearexperiments. The main advantages of the current model are: no need to measure the fracture toughness in shear andtransverse compression, mesh objectivity without the need for a regular mesh and nite element characteristic length, apressure dependency of the shear response, account for load reversal and for some orthotropic eects (making the modelsuitable for Non-Crimp Fabric composites). The model is validated against a range of relevant experiments, namely athrough-the-thickness compression specimen and a at crush coupon with the bres oriented at 45 and 90 degrees to theload. Damage growth mechanisms, orientation of the fracture plane, nonlinear evolution of Poisson's ratio and energyabsorption are accurately predicted.Preprint submitted to Journal of Composites Science and Technology</p

Similar works

Full text

thumbnail-image

RISE – Research Institutes of Sweden

redirect
Last time updated on 16/11/2021

This paper was published in RISE – Research Institutes of Sweden.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess