Asymmetric ‘Clip-Cycle’ Synthesis of Pyrrolidines and Spiropyrrolidines

Abstract

The development of an asymmetric ‘clip-cycle’ synthesis of 2,2- and 3,3-disubstituted pyrrolidines and spiropyrrolidines, which are increasingly important scaffolds in drug discovery programs, is reported. Cbz-protected bis-homoallylic amines were activated by ‘clipping’ them to thioacrylate via an al-kene metathesis reaction. Enantioselective intramolecular aza-Michael cyclisation onto the activated alkene, catalyzed by a chiral phosphoric acid, formed a pyrrolidine. The reac-tion accommodated a range of substitution to form 2,2- and 3,3-disubstituted pyrrolidines and spiropyrrolidines with high enantioselectivities. The importance of the thioester activating group was demonstrated by comparison to ke-tone and oxoester-containing substrates. DFT studies sup-ported the aza-Michael cyclisation as the rate and stereo-chemical determining step, and correctly predicted the for-mation of the major enantiomer. The catalytic asymmetric syntheses of N-methyl pyrrolidine alkaloids (R)-irnidine and (R)-bgugaine, which possess DNA binding and antibacterial properties were achieved using the ‘clip-cycle’ methodology

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.