A Multi-Sims Investigation of Water Content and D/H Ratios in Roberts Massif 04262 with Insight to Sources of Hydrogen in Maskelynite

Abstract

We want to define the H2O content ([H2O]) and hydrogen (H) isotope composition of meteoritic material from Mars [1-3] with motivation to understand Mars volatile history, constrain geochemical signatures of interior water reservoirs (i.e. the Martian mantle) and explore effects of planetary (e.g. planet formation, magma ocean degassing) and local (e.g. volcanic degassing, impact melting and degassing) processes on H incorporated in minerals. Secondary ion mass spectrometry (SIMS) allows multiple avenues to address these questions. However, application to (1) precious astromaterials and (2) low level H measurements, pose specific challenges that are further complicated when combined. We present preliminary data of a multi-approach (SIMS vs. NanoSIMS) study of H in Roberts Massif 04262 (RBT 04262), an enriched lherzolitic shergottite with nonpoikilitic (NP) and poikilitic (P) lithologies [4]. We analyze olivine, pyrox-ene, and melt inclusions to compare indigenous mantle water, with impact-generated maskelynite to investigate H signatures due to shock

Similar works

This paper was published in NASA Technical Reports Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.