Aerodynamic comparisons of membrane wings with cambered and flat frames at low reynolds number

Abstract

The limited size of micro air vehicles (MAVs) requires small power sources, leading to a need for high aerodynamic efficiency. Flexible membrane wings at the MAV scale can experience improved lift/drag ratios, delays in stall, and decreased time-averaged flow separation when compared to rigid wings. This research thesis examines the effect of frame camber on the aerodynamic characteristics of membrane wings. The frames for the wings were designed in SolidWorks and constructed using an Objet30 Pro 3D printer. The membranes are composed of silicone rubber. Tests were conducted in The University of Alabama’s low-speed wind tunnel in 135 Hardaway Hall in low Reynolds number flow (Re ~ 50,000). Aerodynamic force and moment measurements were acquired at angles-of-attack varying from -4 to 24°. The results were used to determine whether cambered frames provide membrane wings with aerodynamic advantages when compared to those with flat frames. Additionally, a digital image correlation (DIC) camera system was used to acquire time-averaged shapes for the membrane wings during wind tunnel tests. The wings were mounted vertically at angles-of-attack of 6° and 18° to represent the regions of maximum efficiency and approaching stall, respectively. An in-house MATLAB program was developed to average the deflection plots from the images and produce time-averaged shapes. Lifting-line theory was applied to the time-averaged shapes to calculate theoretical lift and induced drag coefficients. The experimental set-up, results, and conclusions are discussed. (Published By University of Alabama Libraries

Similar works

Full text

thumbnail-image

University of Alabama Libraries: Acumen

redirect
Last time updated on 04/11/2019

This paper was published in University of Alabama Libraries: Acumen.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.