Tracking human is an important and challenging problem in video-based intelligent robot systems. In this paper, a vision-based human tracking system is supposed to provide sensor input for vision-based control of a mobile robot that works in a team helping the human co-worker. A comparison between NARX neural network and Kalman filter in solving the prediction problem of human tracking in robot vision is presented. After collecting video data from a robot, simulation results obtained from the Kalman filter model are used to compare with the simulation results obtained from the NARX Neural network.Key words: robot vision, Kalman filter, neural networks, human trackin
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.