Modeling of Phosphorous Acid Fuel Cell in PSCAD

Abstract

The renewable energy sources, such as wind, fuel cells, etc. are gaining more attention due to the increase in energy demand as well as being environmental kindly. A dynamic model of Phosphorous Acid Fuel Cell is modeled and simulated using PSCAD/EMTDC. The system consists of a fuel cell stack along with 3-phase Pulse-Width Modulator (PWM) inverter, LCL filter and step-up transformer connected to the main grid. A Real-Reactive power controller is implemented into the 3-phase PWM inverter to control and stabilize the active and reactive power flow onto the main grid. A LCL filter is connected to the inverter side, which eliminates the ultra-harmonic distortions of the frequency. The effect of the Line-Ground, Line-Line, etc. faults on the performance of the main grid’s output voltage is analyzed and studied. The fuel cell is connected to the main grid and the simulation results contain the analysis at different stages of the simulation

Similar works

Full text

thumbnail-image

International Journal of Research and Engineering

redirect
Last time updated on 20/05/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.