A top-level ontology for smart environments

Abstract

Recognising human activities is a problem characteristic of a wider class of systems in which algorithms interpret multi-modal sensor data to extract semantically meaningful classifications. Machine learning techniques have demonstrated progress, but the lack of underlying formal semantics impedes the potential for sharing and re-using classifications across systems. We present a top-level ontology model that facilitates the capture of domain knowledge. This model serves as a conceptual backbone when designing ontologies, linking the meaning implicit in elementary information to higher-level information that is of interest to applications. In this way it provides the common semantics for information at different levels of granularity that supports the communication, re-use and sharing of ontologies between systems.This work is partially supported by the FP7 FET proactive project SAPERE—self-aware pervasive service ecosystems, under grant no. 256873.Postprin

Similar works

This paper was published in St Andrews Research Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: info:eu-repo/semantics/openAccess