Level-Based Analysis of Genetic Algorithms and Other Search Processes

Abstract

The fitness-level technique is a simple and old way to derive upper bounds for the expected runtime of simple elitist evolutionary algorithms (EAs). Recently, the technique has been adapted to deduce the runtime of algorithms with non-elitist populations and unary variation operators [2,8]. In this paper, we show that the restriction to unary variation operators can be removed. This gives rise to a much more general analytical tool which is applicable to a wide range of search processes. As introductory examples, we provide simple runtime analyses of many variants of the Genetic Algorithm on well-known benchmark functions, such as OneMax, LeadingOnes, and the sorting problem

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.