Mutual interactions between objects oscillating in isotopically pure superfluid He-4 in the T -> 0 limit

Abstract

We report the results of experiments to explore interactions between physically separated oscillating objects in isotopically pure superfluid He-4 at T similar to 10 mK. The investigations focused mainly on 32 kHz quartz tuning forks, but also consider a nearby 1 kHz oscillating grid. The low-drive linewidth (LDL) and resonant frequency f(d) of a detector fork were monitored while the maximum velocity of a transmitter fork, separated from the detector by a few mm, was varied over a wide range. Clear evidence was found for mutual interactions between the two forks, and for the influence of the grid on the forks. Monitoring the detector's LDL and f(d) provides evidence for a generator critical velocity in the range 0.3 < nu(c1) < 1.0 cm/s for onset of the detector responses, in addition to a second critical velocity nu(c2) similar to 13 cm/s probably corresponding to the production of quantum turbulence at the generator. The results are discussed, but are not yet fully understood. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765091

Similar works

This paper was published in Lancaster E-Prints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.