MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression.

Abstract

BACKGROUND: squamous cell carcinoma (cSCC) is the second most common skin cancer and frequently progresses from an actinic keratosis (AK), a sun-induced keratinocyte intraepithelial neoplasia (KIN). Epigenetic mechanisms involved in the phenomenon of progression from AK to cSCC remain to be elicited. METHODS:Expression of microRNAs in sun-exposed skin, AK and cSCC was analysed by Agilent microarrays. DNA methylation of miR-204 promoter was determined by bisulphite treatment and pyrosequencing. Identification of miR-204 targets and pathways was accomplished in HaCat cells. Immunofluorescence and immunohistochemistry were used to analyze STAT3 activation and PTPN11 expression in human biopsies.RESULTS:cSCCs display a marked downregulation of miR-204 expression when compared to AK. DNA methylation of miR-204 promoter was identified as one of the repressive mechanisms that accounts for miR-204 silencing in cSCC. In HaCaT cells miR-204 inhibits STAT3 and favours the MAPK signaling pathway, likely acting through PTPN11, a nuclear tyrosine phosphatase that is a direct miR-204 target. In non-peritumoral AK lesions, activated STAT3, as detected by pY705-STAT3 immunofluorescence, is retained in the membrane and cytoplasm compartments, whereas AK lesions adjacent to cSCCs display activated STAT3 in the nuclei.CONCLUSIONS:Our data suggest that miR-204 may act as a "rheostat" that controls the signalling towards the MAPK pathway or the STAT3 pathway in the progression from AK to cSCC.This study was supported by grants PI15/00236, PI041728, PI10/00785, FIS PI11/02070, RD09/0076/00036, RD06/0020/0040, and PS09/00973 from Fondo de Investigación Sanitaria (FIS), Instituto de Salud Carlos III FEDER, SAF2010- 16089, Ministerio de Economía y Competitividad, Spain, from the “Xarxa de Bancs de tumors sponsored by Pla Director d’Oncologia de Catalunya (XBTC)”. IHM is an investigator at the Miguel Servet program (Instituto de Salud Carlos III). ADL is funded by the ISCIII through a research contract Río Hortega (CM14/ 00067). ME is an ICREA Research Professor

Similar works

Full text

thumbnail-image

UPF Digital Repository

redirect
Last time updated on 18/10/2017

This paper was published in UPF Digital Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.