Robust flatness-based switching reconfiguration control using state flow machines of electronic throttle valve

Abstract

In this paper, a robust Fault Tolerant Control reconfiguration approach using State Flow Machines is proposed. Indeed, this reconfiguration strategy is based on robust flatness-based switching control using state machines and flow charts. This approach is developed in discrete time framework in order to track a reference trajectory starting from a flat output variable. For each model, a corresponding flatness-based controller is designed and consequently, a multi controller structure is obtained. The switching flatness-based control is based on switching between identified Operating Modes (OM) using state flow machines. The Luenberger observer’s gains are determined using LMIs tools in order to identify the corresponding OM. The localization of the current OM is carried out by minimization of a performance test characterizing the distance between the system and the given OM. Study of the stability as well as the use of anti-windup devices related to switching between controllers have been considered in the proposed approach. The proposed approach is applied to the nonlinear system which is in our case of study an Electronic Throttle Valve (ETV) using state flow machines modeling

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.