Sonodynamic Therapy Inhibits Fibrogenesis in Rat Cardiac Fibroblasts Induced by TGF-β1

Abstract

Background/Aims: Sonodynamic therapy (SDT) is a localized ultrasound-activated therapy for atherosclerosis when combined with a sonosensitizer, 5-aminolevulinic acid (ALA), but whether it can prevent cardiac fibrosis has not been studied. In the present study, we evaluated the effects SDT on fibrogenesis in rat cardiac fibroblasts. Methods: The primary cardiac fibroblasts were isolated from rats, and induced to fibrogenesis with TGF-β1. With this in vitro model, we tested the preventive effects of SDT on fibrogenesis and further the underlying mechanism. Results: TGF-β1 stimulation up-regulated α-SMA and COLI/III protein levels in cardiac fibroblasts, and enhanced the progression of cells from the G0/G1 phase to the S phase. SDT inhibited the TGF-β1 mediated cell proliferation and decreased the levels of α-SMA and COLI/III by activating AKT/GSK3β pathway and blocking TGF-β1/SMAD3 signaling. Conclusion: Our studies demonstrate an antifibrotic effect of SDT in rat cardiac fibroblasts, suggesting that SDT may intervene cardiac fibrogenesis by regulating myocardial fibrotic remodeling

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.