A substructure-based interval finite element method for problems with uncertain but bounded parameters

Abstract

In this article, the dependency between different elements in solid structures is considered and a substructure-based interval finite element method is used to model the interval properties. The penalty method is applied to impose the necessary constraints for compatibility. In order to obtain the interval stresses, an approximation solution based on the Taylor expansion method is presented. Then, the proposed interval substructure model is expanded to nonlinear problems. In consideration of the nonlinear property of the elasticity modulus, an interval elastoplastic substructure analysis method using constant matrix based on the incremental theory is proposed and the interval expression of the interval stress updated formation is derived. Finally, numerical examples are carried out to demonstrate the reasonability and feasibility of the proposed method and evaluation system

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.