Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using GPU accelerated code

Abstract

This paper presents a broad account of the lid-driven cavity flow problem which is an important benchmark problem for the validation of CFD codes. A comprehensive review of the literature on the problem is presented and discussed, and available benchmarking results are compared in tabulated format to provide a comprehensive source of validation data. In addition, the problem was solved using a Graphical Processing Unit (GPU) accelerated in-house code developed by the authors (https://github.com/TamerAbdelmigid/DrivenCavity_FVM.git), which solves the steady Navier-Stokes equations, using the Finite Volume Method (FVM) in primitive variable formulation. Case studies of steady incompressible flow in a 2D lid-driven square cavity are investigated for 100 < Re < 5000. Detailed second order spatially accurate results are verified and presented in a tabulated form for the sake of serving as benchmark dataset for future works on the same problem. In the present work, collocated grid arrangement along with a uniform structured Cartesian grid up to 1301 × 1301 was used

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 14/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.