Vitamin E Supplementation Delays Cellular Senescence In Vitro

Abstract

Vitamin E is an important antioxidant that protects cells from oxidative stress-induced damage, which is an important contributor to the progression of ageing. Ageing can be studied in vitro using primary cells reaching a state of irreversible growth arrest called senescence after a limited number of cellular divisions. Generally, the most utilized biomarker of senescence is represented by the expression of the senescence associated β-galactosidase (SA-β-gal). We aimed here to study the possible effects of vitamin E supplementation in two different human primary cell types (HUVECs and fibroblasts) during the progression of cellular senescence. Utilizing an unbiased automated system, based on the detection of the SA-β-gal, we quantified cellular senescence in vitro and showed that vitamin E supplementation reduced the numbers of senescent cells during progression of ageing. Acute vitamin E supplementation did not affect cellular proliferation, whereas it was decreased after chronic treatment. Mechanistically, we show that vitamin E supplementation acts through downregulation of the expression of the cycline dependent kinase inhibitor P21. The data obtained from this study support the antiageing properties of vitamin E and identify possible mechanisms of action that warrant further investigation

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.