Centralized and Decentralized Data-Sampling Principles for Outer-Synchronization of Fractional-Order Neural Networks

Abstract

This paper aims to investigate the outer-synchronization of fractional-order neural networks. Using centralized and decentralized data-sampling principles and the theory of fractional differential equations, sufficient criteria about outer-synchronization of the controlled fractional-order neural networks are derived for structure-dependent centralized data-sampling, state-dependent centralized data-sampling, and state-dependent decentralized data-sampling, respectively. A numerical example is also given to illustrate the superiority of theoretical results

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.