Biomimetics Micro Robot with Active Hardware Neural Networks Locomotion Control and Insect-Like Switching Behaviour

Abstract

In this paper, we presented the 4.0, 2.7, 2.5 mm, width, length, height size biomimetics micro robot system which was inspired by insects. The micro robot system was made from silicon wafer fabricated by micro electro mechanical systems (MEMS) technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the insect-like switching behaviour. In addition, we constructed the active hardware neural networks (HNN) by analogue CMOS circuits as a locomotion controlling system. The HNN utilized the pulse-type hardware neuron model (P-HNM) as a basic component. The HNN outputs the driving pulses using synchronization phenomena such as biological neural networks. The driving pulses can operate the actuators of the biomimetics micro robot directly. Therefore, the HNN realized the robot control without using any software programs or A/D converters. The micro robot emulated the locomotion method and the neural networks of an insect with rotary type actuators, link mechanisms and HNN. The micro robot performed forward and backward locomotion, and also changed direction by inputting an external trigger pulse. The locomotion speed was 26.4 mm/min when the step width was 0.88 mm

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 13/10/2017

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.