Skip to main content
Article thumbnail
Location of Repository

The clustering of galaxies in hierarchical galaxy formation models

By SIK HAN KIM

Abstract

Galaxy clustering encodes information about the values of cosmological parameters and also about the physical processes behind galaxy formation and evolution. The GALFORM semi-analytical model is the theoretical approach we used to model galaxy formation. We start by studying the luminosity dependence of galaxy clustering which is measured accurately in the local Universe. We have compared the clustering predictions of three publicly available galaxy formation models with clustering measurements from the 2dFGRS and found that two new processes need to be included in order to understand the observed clustering. We then study the distribution of cold gas in dark matter haloes central to the processes of galaxy formation. We present the cold gas mass function and its evolution with redshift. We have found that the clustering predicted by the semi-analytic models agrees well with the HIPASS measurements of Meyer et al. (2007). We have calculated effective volume for redshift surveys planned with Square Kilometre Array (SKA) and compared with that of the optical Euclid mission. Finally, we study the clustering of faint extragalactic sources which are one of the foregrounds in PLANCK maps. We predict the clustering of faint extragalactic sources using a hybrid GRASIL+GALFORM+N-body model. We have compared the hybrid scheme with analytic clustering estimates. On large scales the two approaches agree, but for multipoles with l>500 the results differ significantly, with the hybrid approach being the more accurate

Topics: Galaxy clustering, Galaxy formation simulation
Year: 2010
OAI identifier: oai:etheses.dur.ac.uk:588
Provided by: Durham e-Theses

Suggested articles

Citations

  1. (1988). A & A, 203, 237 “H I observations of galaxies in the Kraan-Korteweg-Tammann catalogue of nearby galaxies. III - Global parameters of the galaxies”
  2. (1993). A & A, 272, 123 “Molecular Gas in Nearby Galaxies - Part One - Co/ Observations of a Distance-Limited Sample”
  3. (2008). A Fitting Formula for the Merger Timescale of Galaxies in Hierarchical Clustering” doi
  4. (2006). A marked correlation function analysis of halo formation times in the Millennium Simulation” doi
  5. (2000). A&A, 360, 92 “Three high-redshift millimeter sources and their radio and near-infrared identifications”
  6. (2008). A&A, 478, 685 “Carbon monoxide line emission as a CMB foreground: tomography of the star-forming universe with different spectral resolutions” doi
  7. (2008). A&A, 481, 885 “Simulations of the cosmic infrared and submillimeter background for future large surveys. I. Presentation and first application to Herschel/SPIRE and doi
  8. (2008). A&A, 484, 631 “Modelling the spectral energy distribution of ULIRGs. II. The energetic environment and the dense interstellar medium” doi
  9. (2009). A&A, 504, 15 “The simulated H I sky at low redshift”Bibliography 175 doi
  10. (2010). A&A, 510, 60 “Influence of baryonic physics on the merger timescale of galaxies doi
  11. (2007). Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi-analytic model and cosmological SPH simulations” doi
  12. (2000). Analytic model for galaxy and dark matter clustering” doi
  13. (1983). ApJ, 272, 54 “The rate of star formation in normal disk galaxies” doi
  14. (1976). ApJ, 294, 642 “Collisions of galaxies in dense clusters. II - Dynamical evolution of cluster galaxies” doi
  15. (1991). ApJ, 367, 45` ‘Modeling galaxy formation in evolving dark matter halos” doi
  16. (1991). ApJ, 379, 440 “Excursion set mass functions for hierarchical Gaussian fluctuations” doi
  17. (1993). ApJ, 412, 64 “Bias and variance of angular correlation functions doi
  18. (1994). ApJ, 426, 23 “Power-spectrum analysis of three-dimensional redshift surveys” doi
  19. (1997). ApJ, 480, 22 “KarhunenLoeve Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets?” doi
  20. (2001). ApJ, 559, 716 “The Dynamics of Sinking Satellites around Disk Galaxies: A Poor Man’s Alternative to High-Resolution Numerical Simulations” doi
  21. (2003). ApJ, 594, 665 “Probing Dark Energy Using Baryonic Oscillations in the Galaxy Power Spectrum as a Cosmological Ruler” doi
  22. (2003). ApJ, 598, 720 “Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys” doi
  23. (2004). ApJ, 617, 782 “The Pairwise Velocity Dispersion of Galaxies: Luminosity Dependence and a New Test of Galaxy Formation doi
  24. (2005). ApJ, 621, 1 “Predictions of the Angular Power Spectrum of Clustered Extragalactic Point Sources at Cosmic Microwave Background Frequencies from Flat and All-Sky Two-dimensional Simulations” doi
  25. (2007). ApJ, 667, 760 “Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies” doi
  26. (1943). ApJ, 97, 255 “Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction.” doi
  27. (1980). ARA&A, 18, 537 “Microwave background radiation as a probe of the contemporary structure and history of the universe” doi
  28. (2009). arXiv : 0912.0914
  29. (2008). Astrophysics Space Sci, 313, 9 “ALMA capabilities for observations of spectral line emission” doi
  30. (2002). bJ-band galaxy luminosity function and survey selection function” doi
  31. (2009). Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering” doi
  32. (2001). Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes” doi
  33. (2000). Extragalactic Results from the Infrared Space Observatory”
  34. (2007). for the rise of galaxies and active nuclei” doi
  35. (2008). Galaxy evolution in the infrared: comparison of a hierarchical galaxy formation model with Spitzer data” doi
  36. (2004). Galaxy evolution, cosmology and dark energy with the Square Kilometer Array” doi
  37. (2004). Galaxy groups in the Two-degree Field Galaxy Redshift Survey: the luminous content of the groups” doi
  38. (2003). GALICS- I. A hybrid N-body/semi-analytic model of hierarchical galaxy formation” doi
  39. (2003). halo model and non-linear cosmological power spectra” doi
  40. (2004). Heating of galactic discs by infalling satellites” doi
  41. (2005). How do galaxies get their gas? doi
  42. (1978). MNRAS, 183, 341 “Core condensation in heavy halos - A two-stage theory for galaxy formation and clustering” doi
  43. (1991). MNRAS, 248, 332 “The evolution of groups of galaxies in the Press-Schechter formalism” doi
  44. (1993). MNRAS, 262, 1065 “Galaxy formation with a local bias” doi
  45. (1993). MNRAS, 262, 627 “Merger rates in hierarchical models of galaxy formation” doi
  46. (1996). MNRAS, 282, 347 “An analytic model for the spatial clustering of dark matter haloes” doi
  47. (1999). MNRAS, 303, 188 “Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0” doi
  48. (2000). MNRAS, 311, 739 “The nature of galaxy bias and clustering” doi
  49. (2001). MNRAS, 321, 699 “The formation of a bound star cluster: from the Orion nebula cluster to the Pleiades” doi
  50. (2001). MNRAS, 328, 726 “Populating a cluster of galaxies - I. Results at [formmu2]z=0” doi
  51. (2003). MNRAS, 344, 89 “Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps” doi
  52. (2004). MNRAS, 349, 1101 “Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model” doi
  53. (2005). MNRAS, 357, 11 “The abundance of Lyα emitters in hierarchical models” doi
  54. (2005). MNRAS, 358, 949 “Intergalactic stars in z ∼ 0.25 galaxy clusters: systematic properties from stacking of Sloan Digital Sky Survey imaging data” doi
  55. (2005). MNRAS, 360, 27 “Probing dark energy with baryonic oscillations and future radio surveys of neutral hydrogen” doi
  56. (2006). MNRAS, 366, 2 “Properties of galaxy groups in the Sloan Digital Sky Survey - I. The dependence of colour, star formation and morphology on halo mass” doi
  57. (2006). MNRAS, 370, 645 “Breaking the hierarchy of galaxy formation” doi
  58. (2007). MNRAS, 376, 984 “Luminosity dependence of the spatial and velocity distributions of galaxies: semi-analytic models versus the Sloan Digital Sky Survey” doi
  59. (2007). MNRAS, 378, 496 “Properties of wide-separation lensed quasars by clusters of galaxies in the Sloan Digital Sky Survey” doi
  60. (2008). MNRAS, 390, 920 “Mass loss of galaxies due to an ultraviolet background” doi
  61. (2009). MNRAS, 396, 19 “Statistical analysis of galaxy surveys - I. Robust error estimation for twopoint clustering statistics” doi
  62. (2009). MNRAS, 397, 1254 “Testing model predictions of the cold dark matter cosmology for the sizes, colours, morphologies and luminosities of galaxies with the SDSS” doi
  63. (2009). MNRAS, 399, 1447 “The HI gas content of galaxies around Abell 370, a galaxy cluster at z = doi
  64. (2010). MNRAS, 401, 743 “Forecasts for dark energy measurements with future HI surveys” doi
  65. (2010). MNRAS, 403, 768 “Tidal disruption of satellite galaxies in a semi-analytic model of galaxy formation doi
  66. (2010). MNRAS, 404, 876 “The halo occupation distribution of HI from 21-cm intensity mapping at moderate redshifts” doi
  67. (2010). MNRAS, 406, 43 “The redshift evolution of the mass function of cold gas in hierarchical galaxy formation models” doi
  68. (2009). Modelling galaxy clustering: is new physics needed in galaxy formation models?” doi
  69. (1998). Nature, 392, 788 “Submillimetre images of dusty debris around nearby stars” doi
  70. (2005). of the formation, evolution and clustering of galaxies and quasars” doi
  71. (2004). Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts” doi
  72. (2004). Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys” doi
  73. (2010). Predictions for Herschel from Λ-cold dark matter: unveiling the cosmic star formation history” doi
  74. (2004). Predictions for the SKA from hierarchical galaxy formation models” 163Bibliography 164 doi
  75. (2010). Probing dark energy with future redshift surveys: a comparison of emission line and broad-band selection in the near-infrared” doi
  76. (2008). Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters” doi
  77. (2003). Redshift Survey: galaxy clustering per spectral type” doi
  78. (2001). Redshift Survey: luminosity dependence of galaxy clustering” doi
  79. (2002). Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type” doi
  80. (2006). RPPh, 69, 310 “A primer on hierarchical galaxy formation: the semi-analytical approach” doi
  81. (2008). Science with ASKAP. The Australian square-kilometre-array pathfinder” doi
  82. (2009). Simulating subhaloes at high redshift: merger rates, counts and types” doi
  83. (1996). survey: distribution and evolution of high column density HI absorbers” doi
  84. (2001). The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions”Bibliography 166 doi
  85. (2005). The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications” doi
  86. (2008). The Aquarius Project: the subhaloes of galactic haloes”Bibliography doi
  87. (2009). The Atomic-to-Molecular Transition in Galaxies. doi
  88. (2002). The bulk of the cosmic infrared background resolved by ISOCAM” doi
  89. (2001). The clustering evolution of the galaxy distribution” doi
  90. (2008). the clustering of luminous red galaxies since z doi
  91. (2008). The colours of satellite galaxies in groups and clusters” doi
  92. (2006). The dependence of clustering on galaxy properties” doi
  93. (2008). The detectability of baryonic acoustic oscillations in future galaxy surveys” doi
  94. (2008). The effect of dwarf galaxy disruption in semi-analytic models” doi
  95. (2003). The evolution of ΩHI and the epoch of formation of damped Lyman α absorbers” doi
  96. (2006). The formation history of elliptical galaxies” doi
  97. (2001). The Hi Parkes All Sky Survey: southern observations, calibration and robust imaging”Bibliography 165 doi
  98. (2007). The hierarchical formation of the brightest cluster galaxies”Bibliography 167 doi
  99. (2000). The Infrared Side of Galaxy Formation. I. The Local Universe in the Semianalytical Framework” doi
  100. (2002). The large-scale distribution of neutral hydrogen in the Fornax region”Bibliography 178 doi
  101. (2006). The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies” doi
  102. (2006). The properties of Lyα emitting galaxies in hierarchical galaxy formation models” doi
  103. (2008). What is the best way to measure baryonic acoustic oscillations?” doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.