Optimized silicon solar cells for space exploration power systems
- Publication date
- 1971
- Publisher
Abstract
A program is described aimed at designing and fabricating improved silicon solar cells for a range of missions extending from 0.1 to 15 astronomical units (Mercury to Jupiter). For missions lying inside Earth radius (Mercury, Venus) the major cell property required was very low series resistance, allowing high curve fill factor to be maintained at the higher intensities. For the Mercury mission, the temperature of the cell had to be kept low. This was achieved by reflecting more of the incident sunlight by use of large area front contacts. For the outer missions (Mars, the Asteroid belts and Jupiter) the formation of a Schottky barrier at the back contact had to be avoided (by use of a P+ layer under the back contact) and the excess leakage current of the PN junction had to be reduced. Optimum grid patterns were also derived and used for these missions