Abstract
Background
RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although, recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown.
Purpose
Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens.
Methods
The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100 μM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition versus ATP and versus ssDNA, was evaluated.
Results
Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC50) calculated for these compounds were ranging from 14.2 μM for protolichesterinic acid to 42.6 μM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein.
Conclusion
In this paper is describe the first RecA ssDNA binding site ligand. Our study set epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach natural products in general and lichen specifically, represent a successful source of active ligands and structural diversity
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.