Light top squarks in a U(1)(R) lepton number model with a right handed neutrino and the LHC

Abstract

We investigate the phenomenology of top squarks at the Large Hadron Collider (LHC) in a supersymmetric model where lepton number is identified with an approximate U(1)(R) symmetry in such a way that one of the left-chiral sneutrinos can acquire a large vacuum expectation value and can play the role of the down-type Higgs. This R symmetry allows a subset of trilinear R-parity violating interactions, which determine the collider phenomenology of this model in a significant way. The gauginos are Dirac particles and gluinos are relatively heavy in this class of models. The model contains a right handed neutrino superfield, which gives a tree level mass to one of the active neutrinos. An order one neutrino Yukawa coupling also helps enhance the Higgs boson mass at the tree level and results in a very light binolike neutralino ((chi) over tilde (0)(2)) with mass around a few hundred MeV, which is a carrier of missing (transverse) energy (ET). The model can accommodate two rather light top squarks, compatible with the observed mass of the Higgs boson. The lighter top squark ((t) over tilde (1)) can decay into t (chi) over tilde (0)(2), and thus the signal would be similar to the signal of top quark pair production at the LHC. In addition, fully visible decays such as (t) over tilde (2) -> be(+) can give rise to interesting final states. Such signals at the LHC combined with other features like a heavy gluino could provide strong evidence for this kind of a model. Our analysis shows that m((t) over tilde1) less than or similar to 575(750) GeV and m((t) over tilde2) less than or similar to 1.2(1.4) TeV can be probed with 5s statistical significance at the 13 TeV LHC with 300(3000) fb(-1) of integrated luminosity. Finally, we observe that in the presence of superlight carriers of is not an element of(T), the so-called "stealth" top squark scenario may naturally appear in our model.Peer reviewe

Similar works

This paper was published in Helsingin yliopiston digitaalinen arkisto.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.