Differentiating the mechanical response of hierarchical magnesium nano-composites as a function of temperature

Abstract

The effect of temperature change on quasi-static mechanical response of monolithic Mg alongside hierarchical Mg/Al–Al2O3 nano-composites synthesized through powder metallurgy route followed by microwave assisted rapid sintering technique and hot extrusion in 25–200°C temperature range is investigated here. It was observed that in the case of both monolithic Mg and hierarchical Mg/Al–Al2O3 nano-composites, due to temperature increase, strength compromised while failure strain tremendously increased. The asymmetry in tension and compression also tends to vanish as temperature increases. These observed variations in strength and ductility were ascribed to the activity of non-basal slip systems and dynamic recovery at high temperature. It was also observed that presence of composite Al–Al2O3 particles (level-I particles) significantly assisted in improving mechanical response of Mg either at ambient or elevated temperature. Considering the crystallographic texture, the different mechanical response of Mg due to presence of level-I particles as a function of temperature is differentiated here.Qatar National Research Foundation through research Grant # NPRP08-424-2-171 (R-265-000-346-597) and NUS research scholarshi

Similar works

Full text

thumbnail-image

Qatar University Institutional Repository

redirect
Last time updated on 15/02/2017

This paper was published in Qatar University Institutional Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.